Bio-concentration of chromium—an in situ phytoremediation study at South Kaliapani chromite mining area of Orissa, India

2011 ◽  
Vol 184 (2) ◽  
pp. 1015-1024 ◽  
Author(s):  
Monalisa Mohanty ◽  
Mausumi M. Pattnaik ◽  
Aruna K. Mishra ◽  
Hemanta K. Patra
Keyword(s):  
2010 ◽  
pp. 375-380
Author(s):  
J Han ◽  
P Zhang ◽  
X Tian ◽  
S Sun ◽  
H Zhang ◽  
...  

2020 ◽  
Author(s):  
Hugo Moors ◽  
Miroslav Honty ◽  
Carla Smolders ◽  
Ann Provoost ◽  
Mieke De Craen ◽  
...  

<p>The geological extreme Dallol region, located around the Dallol volcano in the north-east of Danakil depression (Ethiopia), is considered as one of the harshest and hottest places on Earth. The geology is made up of years and years of evaporates accumulation. Volcanic activity generates ascending brines that may cross and mix with aquifers from inflowing meteoric water originating from the Ethiopian highlands on the east of the Danakil depression. When these mixtures reach the surface they can generate hydrothermal springs giving rise to waterbodies in the form of small ponds or lakes. During the Europlanet 2018 Danakil field expedition, ten of these saline waterbodies were extensively studied by <em>in situ</em> measurements and <em>ex situ</em> geo–physico-chemical and –microbiological analyses of collected samples, liquids as well as sediments.</p><p>The <em>in situ</em> physico-chemical measurements clearly indicated the extreme nature of all ten investigated lakes. Laboratory analyses of the collected batch samples of liquids and sediments confirmed the extreme character of the waterbodies and complements our geological survey of the region with valuable geo–chemical and –microbiological data.</p><p>Based on our analytical results, the relative small Dallol region can still be subdivided into three geological smaller areas: the outcrop zone, the volcanic base region and the distant south area. The outcrop zone is dominated by sodium, iron and potassium. Oxidation processes in the outflowing superheated ferrous and sulfidic rich brine give rise to some of the most acidic ponds on our planet. In the ponds and lakes of the volcanic base region, incredible high amounts of calcium and/or magnesium can remain in their dissolved form as the most dominant and quasi only available anion is chloride. This region is host for the most saline water body on Earth. Chemical analysis of the lakes of the distant south area show that sodium is by far the most dominant cation. It is therefore no surprise that the large Karum Lake in the south region is economically exploited for the mining of sodium chloride.</p><p>Our mineralogy analyses render results that are completely in line with the observed geochemistry of the waterbodies. Halite and sylvite are the most present minerals in the Dallol outcrop zone associated with some gypsum and in one case with anhydrite. The geology around the waterbodies of volcanic base zone are a little bit more divers. On the shores of the Gaet’ale Pond tachyhydrite, chloromagnesite, halite and sylvite is determined, while the Black Lake is surrounded by bischofite and carnalite. Logically, the mineralogy of the south area, the salt mining area, is dominated by halite and sylvite.</p><p>Apparently, the geochemistry of the outcrop zone and volcanic base region is so harsh that no extremophilic organism is able to survive in these areas. Only in the distant south area did we find indications of the presence of halophiles. Besides the bacterial genus <em>Salinibacter</em>, our 16S rDNA microbiological fingerprinting indicates the presence of halophilic archaea like:  <em>Halobaculum sp., Halobellus sp., Halomicroarcula sp., Halorientalis sp.</em> with the majority of the population being <em>Candidatus Nanosalina sp</em>.</p>


2020 ◽  
Vol 71 (6) ◽  
pp. 124-131
Author(s):  
Alina Cochiorca ◽  
Valentin Nedeff ◽  
Narcis Barsan ◽  
Ion Sandu ◽  
Emilian Mosnegutu ◽  
...  

This paper presents a monitoring of groundwater and surface water in the mining area Tg. Ocna, by analyzing 16 physico-chemical parameters (pH, turbidity, dissolved oxygen, Pb, Ni, Cu, Fe, Mn, Zn, Cr, Mg, SO42-, Al, NO2-, NO3-, NH4+), from three rivers Slanic, Trotus and Valcele, a small lake Groapa Burlacu, a fountain and three monitoring drilling wells (F11, F16 and F17). Studies on the quality of surface water and groundwater in areas near mines are important due to extraction and exploitation of salt. The samples were collected in April 2019. Following the analyzes, their results are included in the following concentration ranges: pH 7.21 to 8.46 unit. pH, turbidity 0.54 to 169 NTU, dissolved oxygen 6 to 8.59 mg/L, Pb 0.075 to 0.095 mg/L, Ni 0.026 to 1.05 mg/L, Cu 0.088 to 0.809 mg/L, NO2- 0.001 to 0.037 mg/L and NO3- 0.290 to 4.34 mg/L. The pH, turbidity and dissolved oxygen were measured in situ using portable equipment�s. As for the other parameters, they were analyzed in the water laboratory from Vasile Alecsandri University of Bacau by using spectrophotometry. Some concentrations of the physico-chemical indicators of the water samples analyzed were found to be more than the water quality classes.


2021 ◽  
Author(s):  
Xiuchang Shi ◽  
Jixing Zhang ◽  
Guoqing Li

Abstract Due to the high in situ stresses, dynamic disasters occurred frequently in the Huainan mining area, China. While our understanding of the in situ stresses in this area is still insufficient. In this study, the in situ stresses of 18 sections in two boreholes in the Xinji No. 1 coalfield were measured by using hydraulic fracturing method, and the distribution of in situ stresses in the Huainan mining area were investigated. The relationship between in situ stress and geological structure in the Huainan mining area were summarized and the limitation of fault friction strength on in situ stresses were discussed. The result showed that the maximum horizontal principal stress (σH) at Xinji No. 1 mine was 13.95–25.23 MPa, the minimum horizontal principal stress (σh) was 12.16–21.17 MPa. The average azimuth of the maximum horizontal principal stress was N83.61 °E. The statistical results showed that the in situ stresses in Huainan mining area were characterized by a strike-slip faulting regime. Both the horizontal and vertical principal stresses increased approximately linearly with the increase of burial depth. The direction of the maximum principal stress in the study area is closely related to the tectonic movement and the ratio of maximum principal stress to minimum principal stress was primarily limited by the friction strength of fault. The outcomes of this research can provide some reliable engineering parameters and benefit the roadway layout and support design in the Huainan mining area.


Geophysics ◽  
1998 ◽  
Vol 63 (6) ◽  
pp. 1965-1970 ◽  
Author(s):  
Gregory N. Tsokas ◽  
Alexandros Stampolidis ◽  
Antonis D. Angelopoulos ◽  
Stefanos Kilias

Mining activities in Lavrion began during the first millennium B.C. after the decline of ancient Athens and then restarted more deliberately during the nineteenth century. Aeromagnetic data from a 1967 survey of the mining area was recompiled, processed, and interpreted for the present study. The original flight lines were digitized and leveled, and the international geomagnetic reference field (IGRF) was removed. The data were inverted by means of a terracing technique that defines separate domains of uniform distribution of physical properties that cause the magnetic anomalies. The log power spectrum was computed; along with the results of terracing, it suggested the existence of two sources of the magnetic anomaly. The long‐wavelength anomaly reflects a large, concealed body that is most probably a granitic intrusion, consistent with local geological evidence. The source of the short‐wavelength anomaly is a strongly magnetized body attributed to the net effect of various thin, magnetite‐bearing sulfide zones. The anomalies were then separated in the wavenumber domain. Magnetic susceptibility measurements were made in situ on the exposed parts of the local formations. Three‐dimensional models whose effect simulates the observed anomalies were calculated. Results of the modeling show that the large magnetic body is buried at 0.68 km depth. The small, relatively shallow body is about 0.035 km thick and buried at 0.6 km depth. The bodies do not show any corresponding gravity anomaly on the regional Bouguer gravity anomaly map.


2021 ◽  
Author(s):  
Lei Wang ◽  
Xiaorong Xie ◽  
Qifeng Li ◽  
Zhifeng Yu ◽  
Guangde Hu ◽  
...  

Abstract Though gold mines provide significant economic benefits to local governments, mining causes soil pollution by potentially toxic trace elements (PTEs) in mining areas, especially in the Qinghai-Tibet Plateau. Screening of native plant species from mining areas is now an effective, inexpensive, and eco-friendly method for the remediation of PTEs in situ. In the present study, we conducted experiments to assess the accumulation of As, Cd, Pb, and Zn in 12 native plant species growing on a typical gold mining area in Qinghai-Tibet Plateau. Our results showed that rhizosphere soils have high soil organic matter content, high levels of As, and moderate levels of Cd. G. pylzowianum accumulated relatively higher As in its shoots and exhibited TF higher than 1 for As (4.65), Cd (1.87), and Pb (1.36). P. saundersiana had BCF-S higher than 1 for Cd (4.52) and Pb (1.70), whereas its TF was higher than 1 for As, Cd, Pb, and Zn. These plant species also exhibit strong tolerance to these PTEs. Furthermore, E. nutans accumulated low levels of As, Cd, Pb, and Zn in their shoots and exhibited TF values lower than 1 for the four PTEs. Therefore, G. pylzowianum could be used for the in situ phytoextraction of As, and P. saundersiana can be used as an effective plant for Cd and Pb phytoextraction. E. nutans is better suited for the phytostabilisation of multiple PTEs. Our study is of significant importance for introducing native plant species to remediate PTE-contaminated soils, particularly As and Cd, and has a good potential for developing PTE phytoremediation strategies at mining sites.


2007 ◽  
Vol 40 (2) ◽  
pp. 736 ◽  
Author(s):  
P. Gamaletsos ◽  
A. Godelitsas ◽  
E. Chatzitheodoridis ◽  
D. Kostopoulos

Bauxite samples collected with permission from currently active mining areas in the Parnassos-Ghiona Mts district were studied using both conventional (optical microscopy and powder XRD) and, for the first time in the literature, micro-scale advanced non-destructive spectroscopic techniques, in particular Laser μ-Raman. The results showed that the different bauxite types (diasporic or boehmitic) can easily be identified regardless of sample type (porous white-grey or massive redbrown) by recording spectra in the low-wavenumber region (250 cm' - 600 cm' ) where distinct bands of the natural AlOOHpolymorphs are easily discernible (448 cm' for diaspore and 362 cm' for boehmite). The method described herein could equally be applied in the laboratory as well as in-situ at the mines for quick and accurate phase determination, in order to bypass the laborious and time-consuming indirect bulk techniques (such as XRD) routinely used to this date.


Sign in / Sign up

Export Citation Format

Share Document