toxic trace elements
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 63)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Mohammad Raknuzzaman ◽  
Md. Habibullah-Al-Mamun

Purpose: We aimed to determine the amount of some toxic elements in three organs of Hilsa shad, focusing on the possible exposure to human health through Hilsa consumption. This study was designed to determine the concentration of seven toxic trace elements (As, Cd, Cr, Cu, Ni, Pb, and Zn) in three distinct organs (n = 21) (muscle, liver, and gills) of Hilsa shad (Tenualosa ilisha) fish collected from the Bangladeshi coastal area. The samples were digested following a microwave digestion. Inductively coupled plasma mass spectrometer was used as analytical instrument. Estimated daily intakes (EDI) and target cancer risk (TR) were used to evaluate carcinogenic and non-carcinogenic risk. Results: The mean concentrations (mg/kg-wet weight) of toxic elements in different organs of T. ilisha were determined as follows: in muscle, As (4.05), Cd (0.09), Cr (0.12), Cu (0.77), Ni (0.26), Pb (0.20), and Zn (10.64); in liver, As (2.83), Cd (0.84), Cr (0.18), Cu (6.17), Ni (0.55), Pb (0.23), and Zn (30.16) and in gills, As (3.45), Cd (0.05), Cr (0.08), Cu (1.06), Ni (0.51), Pb (0.78), and Zn (35.21). The liver showed higher concentrations of most elements than that of muscle except for As. Concentration of As, Cd, and Pb in the fish were found above the food safety guidelines, while other trace element concentrations were below the permissible range for human consumption. According to EDI and TR values, there were carcinogenic and non-carcinogenic risks from exposure to total As concentration from Hilsa fish consumption. Conclusion: This study suggests that the toxic trace elements contamination levels in Hilsa fish from Bangladesh’s coastal area need to be monitored on a systematic and regular basis to ensure the safety of this food item for human consumption.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7289
Author(s):  
Michalina Gałgowska ◽  
Renata Pietrzak-Fiećko

Mushrooms are able to accumulate toxic trace elements. This study investigates the content of cadmium (Cd) and lead (Pb) in selected species of fungi (Boletus badius, Boletus edulis, and Cantharellus cibarius) from the northeastern part of Poland and estimates their edible safety. The amount of Cd and Pb was determined by flameless atomic spectrometry using the iCE 3000 Series-Thermo. The mean content of Cd in analyzed mushrooms ranged from 0.370 to 2.151 mg/kg d.w., while Pb was found at the level of 0.243–0.424 mg/kg d.w. Boletus edulis was characterized by the highest content of Cd, whereas Cantharellus cibarius contained the biggest amount of Pb. Estimated exposure to the Cd intake expressed as percentage share in TWI (Tolerable Weekly Intake) was at the highest level in Boletus edulis (30.87%), which could be associated with the risk of excessive Cd accumulation in the body.


2021 ◽  
Vol 12 ◽  
Author(s):  
Flávio Henrique Silveira Rabêlo ◽  
Jaco Vangronsveld ◽  
Alan J. M. Baker ◽  
Antony van der Ent ◽  
Luís Reynaldo Ferracciú Alleoni

The pollution of soil, water, and air by potentially toxic trace elements poses risks to environmental and human health. For this reason, many chemical, physical, and biological processes of remediation have been developed to reduce the (available) trace element concentrations in the environment. Among those technologies, phytoremediation is an environmentally friendly in situ and cost-effective approach to remediate sites with low-to-moderate pollution with trace elements. However, not all species have the potential to be used for phytoremediation of trace element-polluted sites due to their morpho-physiological characteristics and low tolerance to toxicity induced by the trace elements. Grasses are prospective candidates due to their high biomass yields, fast growth, adaptations to infertile soils, and successive shoot regrowth after harvest. A large number of studies evaluating the processes related to the uptake, transport, accumulation, and toxicity of trace elements in grasses assessed for phytoremediation have been conducted. The aim of this review is (i) to synthesize the available information on the mechanisms involved in uptake, transport, accumulation, toxicity, and tolerance to trace elements in grasses; (ii) to identify suitable grasses for trace element phytoextraction, phytostabilization, and phytofiltration; (iii) to describe the main strategies used to improve trace element phytoremediation efficiency by grasses; and (iv) to point out the advantages, disadvantages, and perspectives for the use of grasses for phytoremediation of trace element-polluted soils.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7081
Author(s):  
Cezara Voica ◽  
Constantin Nechita ◽  
Andreea Maria Iordache ◽  
Carmen Roba ◽  
Ramona Zgavarogea ◽  
...  

The present study was conducted to quantify the daily intake and target hazard quotient of four essential elements, namely, chromium, cobalt, nickel, and copper, and four toxic trace elements, mercury, cadmium, lead, and arsenic. Thirty food items were assigned to five food categories (seeds, leaves, powders, beans, and fruits) and analyzed using inductively coupled plasma-mass spectrometry. Factor analysis after principal component extraction revealed common metal patterns in all foodstuffs, and using hierarchical cluster analysis, an association map was created to illustrate their similarity. The results indicate that the internationally recommended dietary allowance was exceeded for Cu and Cr in 27 and 29 foodstuffs, respectively. According to the tolerable upper level for Ni and Cu, everyday consumption of these elements through repeated consumption of seeds (fennel, opium poppy, and cannabis) and fruits (almond) can have adverse health effects. Moreover, a robust correlation between Cu and As (p < 0.001) was established when all samples were analyzed. Principal component analysis (PCA) demonstrated an association between Pb, As, Co, and Ni in one group and Cr, Cu, Hg, and Cd in a second group, comprising 56.85% of the total variance. For all elements investigated, the cancer risk index was within safe limits, highlighting that lifetime consumption does not increase the risk of carcinogens.


Author(s):  
Francisco Torrens Zaragozá

The periodic tables of transition metal thiophosphates MPS3, transition metal dichalcogenides MX2 and other materials, the origin of chemical elements and toxic trace elements in dried mushrooms are provided. The effective nucleus-electron  attraction is proportional to the effective nuclear charge (Zeff) and inversely proportional to the effective principal quantum number (n*). The periodic arch is one of many modern visual displays that have been developed to augment the traditional periodic table of the chemical elements. The table is related with the multiparameter optimisation of N atom, nuclear magnetic resonance and everyday life. Educational activities are developed with evaluation.


2021 ◽  
Vol 45 (3) ◽  
pp. 150-152
Author(s):  
Seungwoo Lee ◽  
Hye-Jin Yoo ◽  
Sung Yong Han ◽  
Doug-Young Ryu

Author(s):  
Aleksandar Stojsavljević ◽  
Danijela Ristić-Medić ◽  
Đurđa Krstić ◽  
Branislav Rovčanin ◽  
Slavica Radjen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document