Drought impact assessment from monitoring the seasonality of vegetation condition using long-term time-series satellite images: a case study of Mt. Kenya region

2012 ◽  
Vol 185 (5) ◽  
pp. 4117-4124 ◽  
Author(s):  
Youngkeun Song ◽  
John B. Njoroge ◽  
Yukihiro Morimoto
2021 ◽  
Vol 13 (3) ◽  
pp. 1514
Author(s):  
Rebecca Peters ◽  
Jürgen Berlekamp ◽  
Ana Lucía ◽  
Vittoria Stefani ◽  
Klement Tockner ◽  
...  

Mitigating climate change, while human population and economy are growing globally, requires a bold shift to renewable energy sources. Among renewables, hydropower is currently the most economic and efficient technique. However, due to a lack of impact assessments at the catchment scale in the planning process, the construction of hydropower plants (HPP) may have unexpected ecological, socioeconomic, and political ramifications in the short and in the long term. The Vjosa River, draining parts of Northern Greece and Albania, is one of the few predominantly free-flowing rivers left in Europe; at the same time its catchment is identified an important resource for future hydropower development. While current hydropower plants are located along tributaries, planned HPP would highly impact the free-flowing main stem. Taking the Vjosa catchment as a case study, the aim of this study was to develop a transferable impact assessment that ranks potential hydropower sites according to their projected impacts on a catchment scale. Therefore, we integrated established ecological, social, and economic indicators for all HPP planned in the river catchment, while considering their capacity, and developed a ranking method based on impact categories. For the Vjosa catchment, ten hydropower sites were ranked as very harmful to the environment as well as to society. A sensitivity analysis revealed that this ranking is dependent upon the selection of indicators. Small HPP showed higher cumulative impacts than large HPP, when normalized to capacity. This study empowers decision-makers to compare both the ranked impacts and the generated energy of planned dam projects at the catchment scale.


Author(s):  
Clony Junior ◽  
Pedro Gusmão ◽  
José Moreira ◽  
Ana Maria M. Tome

Data science highlights fields of study and research such as time series, which, although widely explored in the past, gain new perspectives in the context of this discipline. This chapter presents two approaches to time series forecasting, long short-term memory (LSTM), a special kind of recurrent neural network (RNN), and Prophet, an open-source library developed by Facebook for time series forecasting. With a focus on developing forecasting processes by data mining or machine learning experts, LSTM uses gating mechanisms to deal with long-term dependencies, reducing the short-term memory effect inherent to the traditional RNN. On the other hand, Prophet encapsulates statistical and computational complexity to allow broad use of time series forecasting, prioritizing the expert's business knowledge through exploration and experimentation. Both approaches were applied to a retail time series. This case study comprises daily and half-hourly forecasts, and the performance of both methods was measured using the standard metrics.


2020 ◽  
Author(s):  
Tiggi Choanji ◽  
Michel Jaboyedoff ◽  
Marc-Henri Derron ◽  
Li Fei ◽  
Chunwei Sun

<p>As a growing city, Batam Islands has an immense potential to become one of the strategic positions in Southeast Asia. However, as the city developed, it also followed with the deformation and potential areas which has prone to shallow landslides. Using 32 Sentinel-1A Satellite Images Data and 17 years of Optical images data, analysis of time series is conducted using Persistent Scattered Interferometry method and mapped for landslide events in the Islands. As a result, several regions impacted 4 – 10 mm/year of velocity deformation in the center part of the island and several locations simulated to be prone to shallow landslide. So, by coupling method of SAR data and optical images, has giving prominent possibility for detecting and predicting hazard potential in this island.</p>


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Khaled Missaoui ◽  
Rachid Gharzouli ◽  
Yamna Djellouli ◽  
Frençois Messner

Abstract. Missaoui K, Gharzouli R, Djellouli Y, Messner F. 2020. Phenological behavior of Atlas cedar (Cedrus atlantica)  forest to snow and precipitation variability in Boutaleb and Babors Mountains, Algeria. Biodiversitas 21: 239-245. Understanding the changes in snow and precipitation variability and how forest vegetation response to such changes is very important to maintain the long-term sustainability of the forest. However, relatively few studies have investigated this phenomenon in Algeria. This study was aimed to find out the response of Atlas cedar (Cedrus atlantica (Endl.) G.Manetti ex Carrière) forest in two areas (i.e Boutaleb and Babors Mountains) and their response to the precipitation and snow variability. The normalized difference vegetation index (NDVI) generated from satellite images of MODIS time series was used to survey the changes of the Atlas cedar throughout the study area well as dataset of monthly precipitation and snow of the province of Setif (northeast of Algeria) from 2000 to 2018. Descriptive analysis using Standarized Precipitation Index (SPI) showed the wetter years were more frequent in the past than in the last two decades. The NDVI values changes in both areas with high values were detected in Babors Mountains with statistically significant differences. Our findings showed important difference in Atlas cedar phenology from Boutaleb mountains to Babors Mountains which likely related to snow factor.


2020 ◽  
Vol 25 (11) ◽  
pp. 2255-2273
Author(s):  
Lauran van Oers ◽  
Jeroen B. Guinée ◽  
Reinout Heijungs ◽  
Rita Schulze ◽  
Rodrigo A. F. Alvarenga ◽  
...  

Abstract Purpose The methods for assessing the impact of using abiotic resources in life cycle assessment (LCA) have always been heavily debated. One of the main reasons for this is the lack of a common understanding of the problem related to resource use. This article reports the results of an effort to reach such common understanding between different stakeholder groups and the LCA community. For this, a top-down approach was applied. Methods To guide the process, a four-level top-down framework was used to (1) demarcate the problem that needs to be assessed, (2) translate this into a modeling concept, (3) derive mathematical equations and fill these with data necessary to calculate the characterization factors, and (4) align the system boundaries and assumptions that are made in the life cycle impact assessment (LCIA) model and the life cycle inventory (LCI) model. Results We started from the following definition of the problem of using resources: the decrease of accessibility on a global level of primary and/or secondary elements over the very long term or short term due to the net result of compromising actions. The system model distinguishes accessible and inaccessible stocks in both the environment and the technosphere. Human actions can compromise the accessible stock through environmental dissipation, technosphere hibernation, and occupation in use or through exploration. As a basis for impact assessment, we propose two parameters: the global change in accessible stock as a net result of the compromising actions and the global amount of the accessible stock. We propose three impact categories for the use of elements: environmental dissipation, technosphere hibernation, and occupation in use, with associated characterization equations for two different time horizons. Finally, preliminary characterization factors are derived and applied in a simple illustrative case study for environmental dissipation. Conclusions Due to data constraints, at this moment, only characterization factors for “dissipation to the environment” over a very-long-term time horizon could be elaborated. The case study shows that the calculation of impact scores might be hampered by insufficient LCI data. Most presently available LCI databases are far from complete in registering the flows necessary to assess the impacts on the accessibility of elements. While applying the framework, various choices are made that could plausibly be made differently. We invite our peers to also use this top-down framework when challenging our choices and elaborate that into a consistent set of choices and assumptions when developing LCIA methods.


Sign in / Sign up

Export Citation Format

Share Document