Enrichment of stream water with fecal indicator organisms during baseflow periods

Author(s):  
Yakov Pachepsky ◽  
Matthew Stocker ◽  
Manuel Olmeda Saldaña ◽  
Daniel Shelton
1983 ◽  
Vol 29 (10) ◽  
pp. 1261-1269 ◽  
Author(s):  
W. J. Robertson ◽  
R. S. Tobin

Fifteen stations, in two estuaries, along the Northumberland Strait of Nova Scotia were examined between June and September 1981 for a relationship between the concentrations of commonly monitored fecal indicator bacteria and the potential pathogens Candida albicans, Pseudomonas aeruginosa, and Vibrio parahaemolyticus. Increased densities of these three organisms were usually associated with high densities of indicator bacteria. Whereas C. albicans and P. aeruginosa occur in human fecal wastes, V. parahaemolyticus is indigenous to the marine environment and positively responds to elevated nutrient levels in sewage. There is also some evidence that these bacteria survive as long or longer in marine waters than the common indicator bacteria. While membrane-filtration techniques for the enumeration of C. albicans and P. aeruginosa proved satisfactory, a V. parahaemolyticus membrane-filtration method lacked specificity and was supplemented by a most-probable-number method. In marine recreational and shellfish waters, these three organisms could complement fecal coliforms and fecal streptococci as indicators of human fecal contamination.


2009 ◽  
Vol 75 (21) ◽  
pp. 6736-6744 ◽  
Author(s):  
Karen St-Pierre ◽  
Simon Lévesque ◽  
Eric Frost ◽  
Nathalie Carrier ◽  
Robert D. Arbeit ◽  
...  

ABSTRACT This study aimed to assess the importance of quantitatively detecting Campylobacter spp. in environmental surface water. The prevalence and the quantity of Campylobacter spp., thermotolerant coliforms, and Escherichia coli in 2,471 samples collected weekly, over a 2-year period, from 13 rivers and 12 streams in the Eastern Townships, Québec, Canada, were determined. Overall, 1,071 (43%), 1,481 (60%), and 1,463 (59%) samples were positive for Campylobacter spp., thermotolerant coliforms, and E. coli, respectively. There were weak correlations between the weekly distributions of Campylobacter spp. and thermotolerant coliforms (Spearman's ρ coefficient = 0.27; P = 0.008) and between the quantitative levels of the two classes of organisms (Kendall tau-b correlation coefficient = 0.233; P < 0.0001). Well water samples from the Eastern Townships were also tested. Five (10%) of 53 samples from private surface wells were positive for Campylobacter jejuni, of which only 2 were positive for thermotolerant coliforms. These findings suggest that microbial monitoring of raw water by using only fecal indicator organisms is not sufficient for assessing the occurrence or the load of thermophilic Campylobacter spp. Insights into the role of environmental water as sources for sporadic Campylobacter infection will require genus-specific monitoring techniques.


PLoS ONE ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. e0232289
Author(s):  
Ilona Herrig ◽  
Susanne Fleischmann ◽  
Julia Regnery ◽  
Jessica Wesp ◽  
Georg Reifferscheid ◽  
...  

Author(s):  
Mahbubul Siddiqee ◽  
Rebekah Henry ◽  
Rebecca Coulthard ◽  
Christelle Schang ◽  
Richard Williamson ◽  
...  

Estuarine bank sediments have the potential to support the survival and growth of fecal indicator organisms, including Escherichia coli. However, survival of fecal pathogens in estuarine sediments is not well researched and therefore remains a significant knowledge gap regarding public health risks in estuaries. In this study, simultaneous survival of Escherichia coli and a fecal pathogen, Salmonella enterica serovar Typhimurium, was studied for 21 days in estuarine bank sediment microcosms. Observed growth patterns for both organisms were comparable under four simulated scenarios; for continuous-desiccation, extended-desiccation, periodic-inundation, and continuous-inundation systems, logarithmic decay coefficients were 1.54/day, 1.51/day, 0.14/day, and 0.20/day, respectively, for E. coli, and 1.72/day, 1.64/day, 0.21/day, and 0.24/day for S. Typhimurium. Re-wetting of continuous-desiccated systems resulted in potential re-growth, suggesting survival under moisture-limited conditions. Key findings from this study include: (i) Bank sediments can potentially support human pathogens (S. Typhimurium), (ii) inundation levels influence the survival of fecal bacteria in estuarine bank sediments, and (iii) comparable survival rates of S. Typhimurium and E. coli implies the latter could be a reliable fecal indicator in urban estuaries. The results from this study will help select suitable monitoring and management strategies for safer recreational activities in urban estuaries.


1992 ◽  
Vol 63 (1-2) ◽  
pp. 201-210 ◽  
Author(s):  
M. Marian Ijzerman ◽  
Charles Hagedorn ◽  
R. B. Reneau

2013 ◽  
Vol 76 (6) ◽  
pp. 967-974 ◽  
Author(s):  
DONNA M. PAHL ◽  
ADRIANA TELIAS ◽  
MICHAEL NEWELL ◽  
ANDREA R. OTTESEN ◽  
CHRISTOPHER S. WALSH

Consumption of fresh tomatoes (Solanum lycopersicum) has been implicated as the cause of several foodborne illness outbreaks in the United States, most notably in cases of salmonellosis. How the levels of fecal indicator organisms (FIOs) in water relate to the counts of these microorganisms on the tomato fruit surface is unknown, although microbial water quality standards exist for agricultural use. This study utilized four types of FIOs currently and historically used in microbial water quality standards (Enterobacteriaceae, total coliforms, fecal coliforms, and Escherichia coli) to monitor the water quality of two surface ponds and a groundwater source. The groundwater tested contained significantly lower counts of all FIOs than the two surface water sources (P &lt; 0.05). Considerable variability in bacterial counts was found in the surface water sources over the course of the season, perhaps explained by environmental variables, such as water temperature, pH, precipitation, and air temperature (R2 of 0.13 to 0.27). We also monitored the fruit surface of grape tomatoes treated with overhead applications of the different water sources over the 2009 and 2010 growing seasons. The type of water source and time of year significantly affected the populations of FIOs in irrigation water (P &lt; 0.05). Despite up to 5-log differences in fecal coliforms and 3-log differences in E. coli between the water sources, there was little difference in the populations measured in washes taken from tomato fruits. This lack of association between the aforementioned FIOs present in the water samples and on the tomato fruit surface demonstrates the difficulty in developing reliable metrics needed for testing of agricultural water to ensure the effectiveness of food safety programs.


Sign in / Sign up

Export Citation Format

Share Document