Optimum conditions of zero-valent iron nanoparticle stabilized foam application for diesel-contaminated soil remediation involving three major soil types

2021 ◽  
Vol 193 (9) ◽  
Author(s):  
Arun Karthick ◽  
Pradipta Chattopadhyay
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Amira Kamal Ibrahem ◽  
Thanaa Abdel Moghny ◽  
Yasser Mohamed Mustafa ◽  
Nermine Elsyed Maysour ◽  
Farida Mohamed Saad El Din El Dars ◽  
...  

Trichloroethylene (TCE) contaminated soil has received extensive attention in the environmental issues. Nanoscale zero-valent iron (NZVI) is considered as an excellent reduction catalyst due to fast degradation of chlorinated solvents. Therefore, this paper aims to evaluate TCE removal from soil by surfactant modified nanoscale zero-valent iron (SNZVI). In this respect, fixed 500 g soil having a diameter range 0.5–1 mm was polluted with 10 mL TCE and put inside glass column of 2.5 cm diameter × 300 cm length. The NZVI solution was prepared from reduction of FeCL3 by NaBH4 and coating with 2.5 g nonionic surfactant (Tween 85) to produce iron nanoparticle concentration of 0.1 g/L. The prepared iron nanoparticle was poured into contaminated soil and left to stir at a constant rate for 24 days. The reductive dechlorination of TCE was measured as a function of increasing chloride ion. It was found that the TCE dechlorination in the presence of iron surfaces displayed pseudo first-order kinetics. The TCE degradation rate constant () is . Also, about 30% of TCE was removed within initial 6 days. The obtained specific rate constant () was and is lower than other studies carried into aqueous phase by about 23 orders of magnitude. Finally, the SNZVI was found to be effective and fully removed to TCE within 456 hours.


2021 ◽  
Vol 13 (2) ◽  
pp. 452
Author(s):  
Junfang Sun ◽  
Angran Tian ◽  
Zheyuan Feng ◽  
Yu Zhang ◽  
Feiyang Jiang ◽  
...  

Carbon emission is one of the main causes of global climate change, thus it is necessary to choose a low-carbon method in the contaminated soil remediation. This paper studies the adsorption ability of ZVI on Pb(II) contaminated soils under different working conditions. The removal efficiency of Pb(II) was 98% because of the suitable ZVI dosage, log reaction time and low initial solution concentration. The whole balancing process was much fast according to the pseudo-second-order kinetic and Freundlich isothermal model. Moreover, sequential extraction procedure (SEP) showed Pb(II) was transformed from Fe/Mn oxides-bound form to residual form in Pb(II) contaminated soils. From scanning electron microscopy (SEM), Brunauer-Emmett-Teller method (BET) and X-ray diffraction (XRD) results, it was confirmed that zero-valent iron (ZVI) stabilizes Pb(II) pollutants mostly through the combination of chemical adsorption and physical adsorption. The economic and carbon emission assessments were used to compare the cost and carbon emissions of different methods. The results show that ZVI adsorption has excellent economic benefits and low carbon emission.


2021 ◽  
Vol 777 ◽  
pp. 145128
Author(s):  
M. Paniagua-López ◽  
M. Vela-Cano ◽  
D. Correa-Galeote ◽  
F. Martín-Peinado ◽  
F.J. Martínez Garzón ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 736-750
Author(s):  
Xilu Chen ◽  
Xiaomin Li ◽  
Dandan Xu ◽  
Weichun Yang ◽  
Shaoyuan Bai

AbstractChromium (Cr) is a common toxic heavy metal that is widely used in all kinds of industries, causing a series of environmental problems. Nanoscale zero- valent iron (nZVI) is considered to be an ideal remediation material for contaminated soil, especially for heavy metal pollutants. As a material of low toxicity and good activity, nZVI has been widely applied in the in situ remediation of soil hexavalent chromium (Cr(vi)) with mobility and toxicity in recent years. In this paper, some current technologies for the preparation of nZVI are summarized and the remediation mechanism of Cr(vi)-contaminated soil is proposed. Five classified modified nZVI materials are introduced and their remediation processes in Cr(vi)-contaminated soil are summarized. Key factors affecting the remediation of Cr(vi)-contaminated soil by nZVI are studied. Interaction mechanisms between nZVI-based materials and Cr(vi) are explored. This study provides a comprehensive review of the nZVI materials for the remediation of Cr(vi)-contaminated soil, which is conducive to reducing soil pollution.


Chemosphere ◽  
2021 ◽  
pp. 131787
Author(s):  
Dan Wu ◽  
Hongshuai Kan ◽  
Ying Zhang ◽  
Tiecheng Wang ◽  
Guangzhou Qu ◽  
...  

2011 ◽  
Vol 414 ◽  
pp. 214-220
Author(s):  
Xiao Song Sun ◽  
An Ping Liu ◽  
Hang Zhou ◽  
Xiao Nan Sun ◽  
Jian Ming Sun

Based on the process of health risk assessment for Cd contaminated sites, study the relationship between exposure duration and recommended target of soil remediation. This paper discusses the changes (from 7.7 mg/kg to 5.0 mg/kg, from 9.1 mg/kg to 3.8 mg/kg) of recommended target for soil remediation when the exposure duration has large changes (EDa ranges from 6a to 36a, EDc ranges from 1a to 12a). The results point out that both EDa and EDc have effects on recommended target of soil remediation, and in general, exposure duration and recommended target of soil remediation vary inversely.


Sign in / Sign up

Export Citation Format

Share Document