The estimation of influencing factors for carbon emissions based on EKC hypothesis and STIRPAT model: Evidence from top 10 countries

Author(s):  
Ellen Thio ◽  
MeiXuen Tan ◽  
Liang Li ◽  
Muhammad Salman ◽  
Xingle Long ◽  
...  
2021 ◽  
Vol 267 ◽  
pp. 01014
Author(s):  
Xue Qin ◽  
Jun Yan ◽  
G.Y. Zhu

Straw resources are abundant in Jiangsu province, the utilization and burning of straw is an important problem in agriculture carbon emission reduction. In order to analyze the effect of straw’s comprehensive utilization technology on agricultural carbon emission, the STIRPAT model is introduced, which takes straw utilization technology as the core explanatory variable while other influencing factors as control variables, and the ridge regression is adopted to conduct an empirical analysis on the influencing factors of agricultural carbon emission in Jiangsu province from 2008 to 2018. The results demonstrate that for every 1% increasing of straw’s comprehensive utilization technology, agriculture carbon emission will be reduced by 0.17%; the labor force is the biggest driver of agriculture carbon emissions; agriculture economic development, energy consumption takes a certain inhibitory effect on agriculture carbon emissions, but not very great.


2021 ◽  
Vol 13 (3) ◽  
pp. 1339
Author(s):  
Ziyuan Chai ◽  
Zibibula Simayi ◽  
Zhihan Yang ◽  
Shengtian Yang

In order to achieve the carbon emission reduction targets in Xinjiang, it has become a necessary condition to study the carbon emission of households in small and medium-sized cities in Xinjiang. This paper studies the direct carbon emissions of households (DCEH) in the Ebinur Lake Basin, and based on the extended STIRPAT model, using the 1987–2017 annual time series data of the Ebinur Lake Basin in Xinjiang to analyze the driving factors. The results indicate that DCEH in the Ebinur Lake Basin during the 31 years from 1987 to 2017 has generally increased and the energy structure of DCEH has undergone tremendous changes. The proportion of coal continues to decline, while the proportion of natural gas, gasoline and diesel is growing rapidly. The main positive driving factors affecting its carbon emissions are urbanization, vehicle ownership and GDP per capita, while the secondary driving factor is residents’ year-end savings. Population, carbon intensity and energy consumption structure have negative effects on carbon emissions, of which energy consumption structure is the main factor. In addition, there is an environmental Kuznets curve between DCEH and economic development, but it has not yet reached the inflection point.


2020 ◽  
Vol 12 (4) ◽  
pp. 1502 ◽  
Author(s):  
Xia Wang ◽  
Lijun Zhang ◽  
Yaochen Qin ◽  
Jingfei Zhang

There are industry lock-in and regional lock-in phenomena in China’s manufacturing industry carbon emissions. However, the existing researches often focus on global carbon emissions, which is not adverse to finding the main problems of manufacturing industry carbon emissions. The biggest contributions of this study are the identification of the industry lock-in and regional lock-in of China’s manufacturing industry and the finding of the regional factors that affect the carbon lock-in of the manufacturing industry, which points out the direction for the low-carbon transformation of the local manufacturing industry. This paper is based on the IPCC (Intergovernmental Panel on Climate Change) carbon emissions coefficient method and energy consumption data from 2000 to 2016 to count the manufacturing industry carbon emissions of 30 provinces in China (except Hong Kong, Macao, Taiwan and Tibet). On this basis, the paper uses a spatial–temporal geographical weighted regression (GTWR) model to analysis the regional influencing factors of the high-carbon manufacturing industry. Results demonstrate that China’s high-carbon manufacturing industry mainly concentrates on the ferrous metal processing industry, non-metallic mineral manufacturing industry and other sectors. In addition, the carbon emissions of high-carbon manufacturing industries are mainly concentrated in Bohai Bay and the North China Plain. The industrial structure and economic scale are the main reasons for the regional carbon lock-in of the high-carbon manufacturing industry, and the strength of the lock-in has continued to increase. Resource endowment is a stable factor of carbon lock-in in high-carbon regions. Technological progress helps to unlock carbon, while foreign direct investment results in the enhancement of carbon regional lock-in. This study focuses on the regional factors of carbon lock-in in the manufacturing industry, hoping to provide decision support for the green development of China’s manufacturing industry.


2021 ◽  
Author(s):  
Haiying Liu ◽  
zhiqun zhang

Abstract Against the background of energy shortages and severe air pollution, countries around the world are aware of the importance of energy conservation and emissions reduction; China is actively achieving emissions reduction targets. In this study, we use a symbolic regression to classify China's regions according to the degree of influencing factors, and calculate and analyze the inherent decoupling relationship between carbon emissions and economic growth in each region. Based on our results, we divided the 30 regions of the country into six categories according to the main influencing factors: GDP (13 regions), energy intensity (EI; 7 regions), industrial structure (IS; 3 regions), urbanization rate (UR; 3 regions), car ownership (CO; 2 regions), and household consumption level (HCL; 2 regions). Then, according to the order of the average carbon emissions in each region from high to low, these regions were further categorized as type-EI, type-UR, type-GDP, type-IS, type-CO, or type-HCL regions. The decoupling index of each region showed a downward trend; EI and GDP regions were the most notable contributors to emissions, based on which we provide policy recommendations.


Sign in / Sign up

Export Citation Format

Share Document