scholarly journals Effects of straw’s comprehensive utilization-technology on agricultural carbon emission in Jiangsu Province

2021 ◽  
Vol 267 ◽  
pp. 01014
Author(s):  
Xue Qin ◽  
Jun Yan ◽  
G.Y. Zhu

Straw resources are abundant in Jiangsu province, the utilization and burning of straw is an important problem in agriculture carbon emission reduction. In order to analyze the effect of straw’s comprehensive utilization technology on agricultural carbon emission, the STIRPAT model is introduced, which takes straw utilization technology as the core explanatory variable while other influencing factors as control variables, and the ridge regression is adopted to conduct an empirical analysis on the influencing factors of agricultural carbon emission in Jiangsu province from 2008 to 2018. The results demonstrate that for every 1% increasing of straw’s comprehensive utilization technology, agriculture carbon emission will be reduced by 0.17%; the labor force is the biggest driver of agriculture carbon emissions; agriculture economic development, energy consumption takes a certain inhibitory effect on agriculture carbon emissions, but not very great.

Author(s):  
Yue Pan ◽  
Gangmin Weng ◽  
Conghui Li ◽  
Jianpu Li

To discuss the coupling coordination relationship among tourism carbon emissions, economic development and regional innovation it is not only necessary to realize the green development of tourism economy, but also great significance for the tourism industry to take a low-carbon path. Taking the 30 provinces of China for example, this paper calculated the tourism carbon emission efficiency based on the super-efficiency Slacks based measure and Data envelope analyse (SBM-DEA) model from 2007 to 2017, and on this basis, defined a compound system that consists of tourism carbon emissions, tourism economic development and tourism regional innovation. Further, the coupling coordination degree model and dynamic degree model were used to explore its spatiotemporal evolution characteristics of balanced development, and this paper distinguished the core influencing factors by Geodetector model. The results showed that (1) during the study period, the tourism carbon emission efficiency showed a reciprocating trend of first rising and then falling, mainly due to the change of pure technical efficiency. (2) The coupling coordination degree developed towards a good trend, while there were significant differences among provinces, showing a gradient distribution pattern of decreasing from east to west. Additionally, (3) the core driving factors varied over time, however, in general, the influence from high to low were as follows: technological innovation, economic development, urbanization, environmental pollution control, and industrial structure. Finally, some policy recommendations were put forward to further promote the coupling coordination degree.


Author(s):  
Wang Lijuan

Carbon emission is further intensified as urbanization and industrialization continue to accelerate. China has maintained its rapid economic development and urbanization in the last 2 decades. The development of the construction industry has not only consumed a large number of energy sources but also resulted in significant carbon emissions, causing some environmental damage. Recognizing the major influencing factors of carbon emissions in the construction industry has become a research hotspot to alleviate environmental pollution caused by the construction industry and meet industrial demands for energy saving and emission reduction. In this study, the factors that influence annual carbon emissions of different building types in China from 2011 to 2018 were decomposed by Logarithmic Mean Divisia Index (LMDI) through a case study in Henan Province. The major influencing factors of carbon emissions have been identified. Results demonstrate that the per capita carbon emission in the construction industry in Henan Province remains high from 2011 to 2018, but it decreases year by year. Carbon emissions from the construction industry in Henan Province increase due to economic development and energy structure. Energy efficiency can inhibit carbon emissions from the construction industry in Henan Province. The obtained conclusions have a positive effect on analyzing annual variations in carbon emissions from the construction industry in a region, identifying influencing factors, and proposing specific countermeasures of energy saving and emission reduction.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


2021 ◽  
Vol 13 (3) ◽  
pp. 1339
Author(s):  
Ziyuan Chai ◽  
Zibibula Simayi ◽  
Zhihan Yang ◽  
Shengtian Yang

In order to achieve the carbon emission reduction targets in Xinjiang, it has become a necessary condition to study the carbon emission of households in small and medium-sized cities in Xinjiang. This paper studies the direct carbon emissions of households (DCEH) in the Ebinur Lake Basin, and based on the extended STIRPAT model, using the 1987–2017 annual time series data of the Ebinur Lake Basin in Xinjiang to analyze the driving factors. The results indicate that DCEH in the Ebinur Lake Basin during the 31 years from 1987 to 2017 has generally increased and the energy structure of DCEH has undergone tremendous changes. The proportion of coal continues to decline, while the proportion of natural gas, gasoline and diesel is growing rapidly. The main positive driving factors affecting its carbon emissions are urbanization, vehicle ownership and GDP per capita, while the secondary driving factor is residents’ year-end savings. Population, carbon intensity and energy consumption structure have negative effects on carbon emissions, of which energy consumption structure is the main factor. In addition, there is an environmental Kuznets curve between DCEH and economic development, but it has not yet reached the inflection point.


Author(s):  
Dede Long ◽  
Grant H. West ◽  
Rodolfo M. Nayga

Abstract The agriculture and food sectors contribute significantly to greenhouse gas emissions. About 15 percent of food-related carbon emissions are channeled through restaurants. Using a contingent valuation (CV) method with double-bounded dichotomous choice (DBDC) questions, this article investigates U.S. consumers’ willingness to pay (WTP) for an optional restaurant surcharge in support of carbon emission reduction programs. The mean estimated WTP for a surcharge is 6.05 percent of an average restaurant check, while the median WTP is 3.64 percent. Our results show that individuals have a higher WTP when the surcharge is automatically added to restaurant checks. We also find that an information nudge—a short climate change script—significantly increases WTP. Additionally, our results demonstrate that there is heterogeneity in treatment effects across consumers’ age, environmental awareness, and economic views. Our findings suggest that a surcharge program could transfer a meaningful amount of the agricultural carbon reduction burden to consumers that farmers currently shoulder.


2018 ◽  
Vol 10 (12) ◽  
pp. 4430 ◽  
Author(s):  
Tong Shu ◽  
Qian Liu ◽  
Shou Chen ◽  
Shouyang Wang ◽  
Kin Lai

Global warming has become a growing concern for countries around the world. Currently, the direct way to solve this issue is to curb carbon emissions. Governments and enterprises should assume the social responsibility to conserve the environment. Under the background of carbon emission constraint, this article investigates the optimal decisions of closed-loop supply chains in the context of social responsibility, explores the impacts of constraints of carbon emissions and corporate social responsibility on recycling and remanufacturing decisions, and introduces the model of maximizing social welfare for further comparison and analysis. The results show that the coefficient of remanufacturing and emission reduction and the coefficient of government reward and punishment are inversely proportional to recycling rates and the total carbon emissions. Governments should formulate rational carbon emission caps for enterprises with different coefficients of remanufacturing and emission reduction. Additionally, corporate social responsibility has a positive effect on recycling rates, and a rise in its strength can lead to a fall in carbon emissions per unit product. In terms of product recycling and profit sources, the model of maximizing social welfare is superior to that of maximizing the manufacturer’s total profits, which provides new managerial insights for decision-makers.


Author(s):  
Hongxia Sun ◽  
Jie Yang ◽  
Yang Zhong

With the increasingly serious problem of environmental pollution, reducing carbon emissions has become an urgent task for all countries. The cap-and-trade (C&T) policy has gained international recognition and has been adopted by several countries. In this paper, considering the uncertainty of market demand, we discuss the carbon emission reduction and price policies of two risk-averse competitive manufacturers under the C&T policy. The two manufacturers have two competitive behaviors: simultaneous decision making and sequential decision making. Two models were constructed for these behaviors. The optimal decisions, carbon emission reduction rate, and price were obtained from these two models. Furthermore, in this paper the effects of some key parameters on the optimal decision are discussed, and some managerial insights are obtained. The results show that the lower the manufacturers’ risk aversion level is, the higher their carbon emission reduction rate and utilities. As the carbon quota increases, the manufacturers’ optimal carbon reduction rate and utilities increase. Considering consumers’ environmental awareness, it is more beneficial for the government to reduce the carbon quota and motivate manufacturers’ internal enthusiasm for emission reduction. The government can, through macro control of the market, make carbon trading prices increase appropriately and encourage manufacturers to reduce carbon emissions.


2019 ◽  
Vol 118 ◽  
pp. 04014
Author(s):  
Tao Yi ◽  
Mohan Qiu ◽  
Zhengang Zhang ◽  
Song Mu ◽  
Yu Tian

Under the mandatory push of meeting carbon emission reduction commitments proposed in the Paris Agreement, the analysis on the peaking time of China’s carbon emissions deserves enough attention. This paper focuses on the peaking times of total carbon emissions (TCE) and carbon emission intensity (CEI) in the Yangtze River Delta (YRD). According to the development of carbon emissions in YRD and related targets in the 13th Five-Year Plan, the peaking times of TCE and CEI in different scenarios are predicted based on the influence mechanism analysis of carbon emissions in YRD from the perspective of energy, economy and society. Considering the development characteristics of China at this stage, this paper introduces several new indicators such as full-time equivalent of research and development (R&D) personnel and investment in environmental pollution control. Based on the study results, several policy recommendations are put forward to fulfil China’s carbon emission reduction commitments.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Xin Tong

As economic development rapidly progresses in China, a method of carbon emission control that provides reasonable solutions is needed. This paper analyzes the convergence of carbon emission evolutionary characteristics in different regions of China and studies the dynamics of carbon emissions in China based on a convergence model. It was found that the carbon emission levels of each region are prominent in terms of time, and the regional carbon emission level has absolute β characteristics. The regional carbon emission condition β convergences have different convergence paths. Therefore, it is necessary to justify carbon emission reduction in China and put forward an emission reduction strategy.


Sign in / Sign up

Export Citation Format

Share Document