3D-Mathematical model to simulate groundwater flow and sulfate concentration in Tantaria watershed, Bemetara district, Chhattisgarh, India

Author(s):  
Suvendu Kumar Sahu ◽  
D. C. Jhariya
2004 ◽  
Vol 36 (4) ◽  
pp. 2021
Author(s):  
A. Παναγόπουλος ◽  
E. Δρακοπούλου ◽  
V. Περλέρος

MODFLOW is a very well verified code of mathematical modeling for simulation of saturated groundwater flow in porous medium. Groundwater flow simulation in discontinuity media (i.e. media characterized by dominance of secondary and tertiary porosity as opposed to primary porosity), such as karstic aquifers, utilizing specialized models is problematic. Due to existing impedes the use of the conventional model MODFLOW was attempted for the simulation of the karstic system of the Viotikos Kifisos river aiming predominantly at assessing the potential, restrictions, particularities and conditions under which such a modelling code could be implemented, especially when relatively restricted volume of raw data is available. Compilation and calibration of the model suggest that MODFLOW may in general be implemented and can provide useful results. As in every mathematical model, knowledge of the assumptions made and the intrinsic restrictions involved is required, along with in-depth evaluation of its capabilities. The mathematical model of Viotikos Kifisos basin forms a valuable tool for management of its water resources and study of regional groundwater evolution.


2013 ◽  
Vol 316-317 ◽  
pp. 1112-1117 ◽  
Author(s):  
Ai Jun Shao ◽  
Yuan Huang ◽  
Qing Xin Meng

This paper presents the numerical simulation of groundwater flow and the prediction of drainage in the No.5 mine of the Feng-feng coal mine area, using the data from a water invasion. First of all, we build a mathematical model of groundwater flow according to the hydrogeological conditions. Then, the model is verified by the water invasion data. The measured and simulated water level fit well during the model verification. At last, the mine drainage was predicted using the established model. The results indicated that the coal mining below -100m would result in a large amount of drainage and relative high cost.


2020 ◽  
Vol 15 (3) ◽  
pp. 162-171
Author(s):  
Andrej Šoltész ◽  
Dana Baroková ◽  
Zinaw Dingetu Shenga ◽  
Michaela Červeňanská

Presented paper deals with the hydraulic assessment of groundwater flow in the area affected by the realization of the hydraulic gate on the Klátov branch and in the adjacent territory of a dike, which is located on the right-side of Little Danube. This hydraulic assessment is part of the project of the Slovak Water Management Enterprise, which also aims to increase the height and seal the dike on the right-side of the Little Danube. Generally, the project is divided into three phases (Phase I, II and III) to implement different technical measures to protect the area from flooding. The assumption for the execution of the technical measures of the mentioned three project phases is a continuous flood protection of part of the Žitný ostrov area around the Little Danube and the Klátov River branch in the reach from Kolárovo to Jahodná town. Therefore, a 3D mathematical model was created to simulate groundwater flow by changing boundary conditions of surface water flow during flood periods.


1985 ◽  
Vol 16 (2) ◽  
pp. 67-78 ◽  
Author(s):  
B. Johansson

The soil and groundwater flow of a hillslope adjacent to a stream has been studied using a physically based mathematical model. Values of soil parameters have been taken from investigations of Swedish till soils. Model simulations have been made in order to calculate groundwater outflow during and after a rainfall event, and to study the response to infiltration of soil and groundwater flow in different parts of the slope. The effects of soil layering and slope configuration have also been studied. The simulated peak of groundwater outflow, occurring just after cessation of infiltration, is of the same order of magnitude as a typical streamflow peak in a small Swedish watershed. The increase of groundwater outflow during and after a rainfall event is, according to model simulation, caused by infiltration close to the stream. Hence, the soil properties of this part of the slope are of great importance to runoff generation.


2018 ◽  
Vol 197 ◽  
pp. 10003 ◽  
Author(s):  
Ngakan Putu Purnaditya ◽  
Herr Soeryantono ◽  
Dwinanti Rika Marthanty

Seawater intrusion is one of groundwater quality problem which in this problem, the mixing between freshwater and saltwater in the coastal aquifer occurs. Mathematical modelling can be formulated to describe the mechanism of this phenomena. The main objective of this research is to develop the mathematical model of groundwater flow and solute transport that applicable to seawater intrusion mechanism. This mechanism is arranged as a differential equation and distinguished into 3 equations. The first equation is groundwater flow equation in dependent-density. It means that the density of groundwater (ρ) changes in spatial and temporal domain due freshwater and seawater are mixed in the coastal aquifer. The second equation is solute transport. Like as groundwater flow equation, in solute transport equation there is a change of solute concentration (С) in the spatial and temporal domain. The last equation is the relationship between groundwater density (ρ) and solute concentration (С). Special case for the third equation, in which this equation is adopted from USGS Seawat model. The first equation and second equation are governed by Eulerian mass conservation law. The main theoretical consideration of governing groundwater flow equation is such as fluid and porous matrix compressibility theory, Darcy's law for groundwater in motion theory and some properties of soil. In other hands, solute transport is involving advection transport and hydrodynamic dispersion transport. Hydrodynamic dispersion is arranged by diffusion Fick's law and dispersion in porous media theory and it depends on transversal and longitudinal dispersivity. Using Jacob Bear's theory which states that fluid density as temperature, concentration and pressure function, authors obtain three primary variables in this model. Those variables follow fluid density (ρ), total head (h) and concentration (С). In this model, isotropic and isobar condition is considered, hence fluid density (ρ) is a function of concentration (С) only. Finally, from this research, authors wish this mathematical model is applicable to modelling, describing and predicting seawater intrusion phenomena theoretically.


Sign in / Sign up

Export Citation Format

Share Document