Use of Metal-Containing Carbon Nanotubes in Isomerization of Oleic Acid

2021 ◽  
Author(s):  
A. A. Kaporov ◽  
A. P. Mikhailovskaya ◽  
S. S. Lysova ◽  
T. Manetski
Keyword(s):  
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Anirban Das ◽  
Eric Hall ◽  
Chien M. Wai

Attachment of PbS quantum dots (QD) to single-walled carbon nanotubes (SWNT) and multiwalled carbon nanotubes (MWCNT) is described; wherein commercially obtained PbS-QD of size 2.7 nm, stabilized by oleic acid, are added to a suspension of single- or multiwalled carbon nanotubes (CNT) prefunctionalized noncovalently with 1,2-benzenedimethanethiol (1,2-BDMT) in ethanol. The aromatic part of 1,2-BDMT attaches to the CNT byπ-πstacking interactions, noncovalently functionalizing the CNT. The thiol part of the 1,2-BDMT on the functionalized CNT replaces oleic acid on the surface of the QD facilitating the noncovalent attachment of the QD to the CNT. The composites were characterized by TEM and FTIR spectroscopy. Quenching of NIR fluorescence of the PbS-QD on attachment to the carbon nanotubes (CNT) was observed, indicating FRET from the QD to the CNT.


2012 ◽  
Vol 21 ◽  
pp. 125-130 ◽  
Author(s):  
Alex Junior de Freitas Cabral ◽  
Clascídia Aparecida Furtado ◽  
Cristiano Fantini ◽  
Petrus Alcantara Jr.

Suspensions of oleic acid with carbon nanotubes were prepared. Using a thermal lens experimental setup, the thermal diffusivity of oleic acid in presence of multi-walled carbon nanoparticles with different concentrations was measured. The results show that, the thermal diffusivity increases with the increase of nanotubes concentration, enhancing the thermal diffusivity in the solution. Modification in the thermal diffusivity as function of quantity of carbon nanotubes was investigated, for a constant volume of oleic acid 10 mL. The diffusivities were obtained by using the thermal lens spectrometry technique. The characteristic time constant of the transient thermal lens was obtained by fitting the theoretical expression to the experimental data.


2016 ◽  
Vol 16 (4) ◽  
pp. 4224-4232
Author(s):  
Xiaoning Liang ◽  
Wei Li

We studied the dispersity of multi-walled carbon nanotubes (MWNTs) combined with different metallic particles (Ni and Fe). An ultrasonic-assisted water-bath dispersion process was used to disperse the metal-coated MWNTs in different solutions and the dispersity was measured using an ultraviolet-visible spectrophotometer. The dispersity and morphology of the MWNTs were characterized using field-emission scanning electron microscopy (FE-SEM) together with digital image processing technology. Effects of dispersant type (sodium dodecyl benzene sulfonate (SDBS), oleic acid, and polymer (TNEDIS)) and surfactant dosage on the dispersity of the metal-coated MWNTs were investigated under controlled and uncontrolled temperatures and results were compared with those from the untreated MWNTs. The results showed that the negative effects of temperature on the ultrasonic dispersion process could be eliminated through a temperature-controlled system. Moreover, the TNEDIS, SDBS, and oleic acid were arranged in the descending order of the dispersion effect degree. The untreated MWNTs, Ni-coated MWNTs, and Fe-coated MWNTs were arranged in the descending degree of dispersity order. Since the metal coating makes the MWNTs harder and more fragile, the metal-coated MWNTs are more likely to fracture during the ultrasonic dispersion process.


2011 ◽  
Vol 221 ◽  
pp. 1-7 ◽  
Author(s):  
Ying An ◽  
Xue Tao He ◽  
Wei Min Yang ◽  
Yu Mei Ding

In order to improve the dispersion homogeneity and stabilization of multi-walled carbon nanotubes (MWNT) in epoxy resin, the effect of different surfactants such as hexadecyl trimethyl ammonium bromide (HTAB), sodium dodecyl sulfate (SDS), oleic acid, Triton X-100 and BYK-9077 on the dispersion of MWNT were investigated. Suspensions of MWNTs/epoxy resin with various surfactants were prepared by ultrasonic agitation. Dispersion homogeneity of MWNT in epoxy resin was evaluated by transmission electron microscopy (TEM), and dispersion stabilization was evaluated by stationary observation. The results show that dispersion properties were not improved by HTAB, while they were improved incoordinately by SDS, oleic acid, Triton X-100 and BYK-9077. Suspensions of MWNTs/epoxy resin with HTAB, SDS, oleic acid and Triton X-100 were all delaminated quickly, it means, dispersion stabilization were not improved by these surfactants. BYK-9077 was the only surfactant which enhanced the dispersion homogeneity and stabilization of MWNTs/epoxy resin significantly. Based on this research, various weight ratios of surfactant BYK-9077 to MWNT were studied. The experimental results show that the dispersion system could reach a balance state when the ratio of surfactant BYK-9077 to MWN was 2.


Author(s):  
M.D. Bentzon ◽  
J. v. Wonterghem ◽  
A. Thölén

We report on the oxidation of a magnetic fluid. The oxidation results in magnetic super lattice crystals. The “atoms” are hematite (α-Fe2O3) particles with a diameter ø = 6.9 nm and they are covered with a 1-2 nm thick layer of surfactant molecules.Magnetic fluids are homogeneous suspensions of small magnetic particles in a carrier liquid. To prevent agglomeration, the particles are coated with surfactant molecules. The magnetic fluid studied in this work was produced by thermal decomposition of Fe(CO)5 in Declin (carrier liquid) in the presence of oleic acid (surfactant). The magnetic particles consist of an amorphous iron-carbon alloy. For TEM investigation a droplet of the fluid was added to benzine and a carbon film on a copper net was immersed. When exposed to air the sample starts burning. The oxidation and electron irradiation transform the magnetic particles into hematite (α-Fe2O3) particles with a median diameter ø = 6.9 nm.


Author(s):  
Jun Jiao

HREM studies of the carbonaceous material deposited on the cathode of a Huffman-Krätschmer arc reactor have shown a rich variety of multiple-walled nano-clusters of different shapes and forms. The preparation of the samples, as well as the variety of cluster shapes, including triangular, rhombohedral and pentagonal projections, are described elsewhere.The close registry imposed on the nanotubes, focuses attention on the cluster growth mechanism. The strict parallelism in the graphitic separation of the tube walls is maintained through changes of form and size, often leading to 180° turns, and accommodating neighboring clusters and defects. Iijima et. al. have proposed a growth scheme in terms of pentagonal and heptagonal defects and their combinations in a hexagonal graphitic matrix, the first bending the surface inward, and the second outward. We report here HREM observations that support Iijima’s suggestions, and add some new features that refine the interpretation of the growth mechanism. The structural elements of our observations are briefly summarized in the following four micrographs, taken in a Hitachi H-8100 TEM operating at an accelerating voltage of 200 kV and with a point-to-point resolution of 0.20 nm.


1958 ◽  
Vol 34 (5) ◽  
pp. 901-909 ◽  
Author(s):  
Ervin Kaplan ◽  
Bernard D. Edidin ◽  
Robert C. Fruin ◽  
Lyle A. Baker

Sign in / Sign up

Export Citation Format

Share Document