Preparation of oleic acid modified multi-walled carbon nanotubes for polystyrene matrix and enhanced properties by solution blending

2015 ◽  
Vol 26 (11) ◽  
pp. 8667-8675 ◽  
Author(s):  
L. T. Wang ◽  
Q. Chen ◽  
R. Y. Hong ◽  
M. Rajesh Kumar
2012 ◽  
Vol 21 ◽  
pp. 125-130 ◽  
Author(s):  
Alex Junior de Freitas Cabral ◽  
Clascídia Aparecida Furtado ◽  
Cristiano Fantini ◽  
Petrus Alcantara Jr.

Suspensions of oleic acid with carbon nanotubes were prepared. Using a thermal lens experimental setup, the thermal diffusivity of oleic acid in presence of multi-walled carbon nanoparticles with different concentrations was measured. The results show that, the thermal diffusivity increases with the increase of nanotubes concentration, enhancing the thermal diffusivity in the solution. Modification in the thermal diffusivity as function of quantity of carbon nanotubes was investigated, for a constant volume of oleic acid 10 mL. The diffusivities were obtained by using the thermal lens spectrometry technique. The characteristic time constant of the transient thermal lens was obtained by fitting the theoretical expression to the experimental data.


2019 ◽  
Vol 31 (9) ◽  
pp. 1943-1948
Author(s):  
Priyabrata Mohanty ◽  
Tapan Kumar Bastia ◽  
Dibakar Behera ◽  
Shivkumari Panda

This work represents the preparation and characterization of some unique properties of vinyl ester (VE) and unsaturated polyester (UPE) blend based nanocomposites by introducing biopolymer chitosan grafted multi-walled carbon nanotubes (MWCNTs). Initially, surface grafting of MWCNTs with chitosan was performed by utilizing glutaraldehyde as a cross linking reagent through covalent deposition method and are successfully characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy(SEM). Then 50:50 wt % of vinyl ester and unsaturated polyester blend was prepared by simple sonication method. Three different specimens of VE/UPE/CS-g-MWCNTs nanocomposites were fabricated with addition of 1, 3 and 5 wt % of functionalized bionanofiller. Chitosan grafting of MWCNTs offered enhanced properties to the nanocomposites suggesting homogeneous distribution of the nanofiller in the matrix with minimum corrosion and swelling properties. 3 wt % of functionalized bionanofiller loading showed superior essential characteristics and after that the properties reduced may be due to the nucleating tendency of the nanofiller particles.


2016 ◽  
Vol 16 (4) ◽  
pp. 4224-4232
Author(s):  
Xiaoning Liang ◽  
Wei Li

We studied the dispersity of multi-walled carbon nanotubes (MWNTs) combined with different metallic particles (Ni and Fe). An ultrasonic-assisted water-bath dispersion process was used to disperse the metal-coated MWNTs in different solutions and the dispersity was measured using an ultraviolet-visible spectrophotometer. The dispersity and morphology of the MWNTs were characterized using field-emission scanning electron microscopy (FE-SEM) together with digital image processing technology. Effects of dispersant type (sodium dodecyl benzene sulfonate (SDBS), oleic acid, and polymer (TNEDIS)) and surfactant dosage on the dispersity of the metal-coated MWNTs were investigated under controlled and uncontrolled temperatures and results were compared with those from the untreated MWNTs. The results showed that the negative effects of temperature on the ultrasonic dispersion process could be eliminated through a temperature-controlled system. Moreover, the TNEDIS, SDBS, and oleic acid were arranged in the descending order of the dispersion effect degree. The untreated MWNTs, Ni-coated MWNTs, and Fe-coated MWNTs were arranged in the descending degree of dispersity order. Since the metal coating makes the MWNTs harder and more fragile, the metal-coated MWNTs are more likely to fracture during the ultrasonic dispersion process.


2021 ◽  
Vol 4 (4) ◽  
pp. 388-398
Author(s):  
Manuel Alejandro Cardona Salcedo ◽  
Mercedes Teresita Oropeza Guzmán ◽  
Grecia Isis Moreno Grijalva ◽  
Arturo Zizumbo López ◽  
Juan Antonio Paz González ◽  
...  

In recent years, the composite nanomaterials area has had a great development impact in health sciences. Biomaterials depict as one of the most promising since they are compatible with additive manufacturing (AM) techniques. It is also possible to use them to mold specific medical parts. Composite nanomaterials have shown good biocompatibility and low toxicity to have benefits equal to or greater than metals (i.e., Co-Cr alloy). The purpose of this study is to develop a nanocomposite biomaterial (PLA/MWCNTf) from Polylactic Acid (PLA) and functionalized Multi Walled Carbon Nanotubes (MWCNTf) to evidence its potential application in 3D printing of orthopedic fixation devices. PLA/MWCNTf nanocomposite was prepared by solution blending technique, incorporating a proportion of 0.5 wt% of MWCNTf to the PLA matrix. TGA analysis of the PLA/MWCNTf was used to determine the thermal stability, a slight increase was found compared to the PLA.  FTIR spectroscopy confirmed the presence of carboxylic acid groups in the MWCNTf which improves good incorporation of the nanotubes in the PLA matrix. Additionally, Raman spectroscopy, SEM, and AFM micrographs were used to verify MWCNTf reached the PLA surface homogeneously. Additive manufacturing preparation was done by extrusion molding of PLA/MWCNTf as well as its 3D printing.   


2010 ◽  
Vol 150-151 ◽  
pp. 1017-1021
Author(s):  
Ruo Xi Wang ◽  
Hua Wang ◽  
Xing You Tian ◽  
Qing Yan ◽  
Kang Zheng ◽  
...  

Antistatic Poly(ethylene terephthalate) (PET) materials had been successfully prepared through solution-blending incorporation of ethylene glycol-graft-Multi-walled carbon nanotubes (EG-g-MWCNTs). MWCNTs were first carboxylated and then esterified with EG to yield EG-g-MWCNTs. The FT-IR spectra, TEM images, Raman spectra, TGA curves and electrical conductivity were investigated, which indicated that the agglomeration degree of MWCNTs has been reduced and the conductivity keeps as high as 4.278 S/cm after the modification of EG. On the other hand, EG-g-MWCNTs dispersed well in EG, which was one of the synthetic monomers for PET, and thus ensured its good compatibility with PET. As a result, the electrical conductivity of PET/EG-g-MWCNTs nanocomposites (0.1 wt%) was seven orders of magnitude higher than pure PET and reached the antistatic level.


2011 ◽  
Vol 221 ◽  
pp. 1-7 ◽  
Author(s):  
Ying An ◽  
Xue Tao He ◽  
Wei Min Yang ◽  
Yu Mei Ding

In order to improve the dispersion homogeneity and stabilization of multi-walled carbon nanotubes (MWNT) in epoxy resin, the effect of different surfactants such as hexadecyl trimethyl ammonium bromide (HTAB), sodium dodecyl sulfate (SDS), oleic acid, Triton X-100 and BYK-9077 on the dispersion of MWNT were investigated. Suspensions of MWNTs/epoxy resin with various surfactants were prepared by ultrasonic agitation. Dispersion homogeneity of MWNT in epoxy resin was evaluated by transmission electron microscopy (TEM), and dispersion stabilization was evaluated by stationary observation. The results show that dispersion properties were not improved by HTAB, while they were improved incoordinately by SDS, oleic acid, Triton X-100 and BYK-9077. Suspensions of MWNTs/epoxy resin with HTAB, SDS, oleic acid and Triton X-100 were all delaminated quickly, it means, dispersion stabilization were not improved by these surfactants. BYK-9077 was the only surfactant which enhanced the dispersion homogeneity and stabilization of MWNTs/epoxy resin significantly. Based on this research, various weight ratios of surfactant BYK-9077 to MWNT were studied. The experimental results show that the dispersion system could reach a balance state when the ratio of surfactant BYK-9077 to MWN was 2.


Acta Naturae ◽  
2011 ◽  
Vol 3 (1) ◽  
pp. 99-106 ◽  
Author(s):  
E A Smirnova ◽  
A A Gusev ◽  
O N Zaitseva ◽  
E M Lazareva ◽  
G E Onishchenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document