Metabolic responses of Chinese perch (Siniperca chuatsi) to different levels of dietary carbohydrate

Author(s):  
Yanpeng Zhang ◽  
Xu-fang Liang ◽  
Shan He ◽  
Jie Wang ◽  
Ling Li ◽  
...  
2021 ◽  
Author(s):  
Di Peng ◽  
Xu-Fang Liang ◽  
Farui Chai ◽  
Hexiong Feng ◽  
Jiao Li ◽  
...  

Abstract An 8-week feeding trial was conducted to evaluate the effects of dietary carbohydrate to lipid (CHO: L) ratios on growth performance, body composition, serum biochemical indexes, lipid metabolism and gene expression of central appetite regulating factors in Chinese perch (Siniperca chuatsi) (mean initial weight: 12.86 ± 0.10 g). Five isonitrogenous and isoenergetic diets (fish meal, casein as main protein sources) were formulated to contain different graded CHO:L ratio diets ranging from 0.12, 0.86, 1.71, 3.29 and 7.19. Each diet was assigned to triplicate groups of 18 experimental fish for 8 weeks. Our results revealed that final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR), protein efficiency ratio (PER) increased with dietary CHO:L ratio from 0.12 to 1.71, and then decreased with further increases in dietary CHO:L ratio. A two-slope broken-line regression analysis based on WGR showed that the optimal dietary CHO: L level for maximum growth performance of fish was 1.60. Crude lipid and crude protein content in the liver and glycogen concentration in the muscle and liver were significantly influenced by the dietary CHO:L ratios (P < 0.05). The lowest crude lipid content in the liver was observed in fish fed the diet with a CHO:L ratio of 1.71(P < 0.05). Dietary CHO:L ratios significantly induced the Glu contents of serum (P < 0.05). The relative expression levels of genes involved in lipid metabolism, such as srebp1 and fas in the liver showed a trend of first decreased and then increased with the increase of dietary CHO:L ratios levels. Appropriate CHO:L ratio in the diet can effectively reduce the accumulation of liver fat. We observed in fish fed the 1.71 CHO:L ratio diet showed higher feed intake, up‐regulated mRNA expression of neuropeptide Y (NPY) and agouti gene-related protein (AGRP), down‐regulated mRNA expression of cocaine-and amphetamine-regulated transcript (CART) and pro‐opiomelanocorticoid (POMC) significantly as compared to control group. Thus, these results provide the theoretical basis for feed formulation to determine the appropriate CHO:L ratio requirement of Chinese perch.


Vaccines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1003
Author(s):  
Xia Luo ◽  
Yinjie Niu ◽  
Xiaozhe Fu ◽  
Qiang Lin ◽  
Hongru Liang ◽  
...  

Mandarin fish (Siniperca chuatsi) is one of the important cultured fish species in China. Infectious spleen and kidney necrosis virus (ISKNV) and Siniperca Chuatsi rhabdovirus (SCRV) have hindered the development of mandarin fish farming industry. Vaccination is the most effective method for control of viral diseases, however viral vaccine production requires the large-scale culture of cells. Herein, a suspension culture system of Chinese perch brain cell (CPB) was developed on Cytodex 1 microcarrier in a stirred bioreactor. Firstly, CPB cells were cultured using Cytodex 1 microcarrier in 125 mL stirring flasks. With the optimum operational parameters, CPB cells grew well, distributed uniformly, and could fully cover the microcarriers. Then, CPB cells were digested with trypsin and expanded step-by-step with different expansion ratios from the 125 mL stirring bottle to a 500 mL stirring bottle, and finally to a 3-L bioreactor. Results showed that with an expansion ratio of 1:3, we achieved a high cell density level (2.25 × 106 cells/mL) with an efficient use of the microcarriers, which also confirmed the data obtained from the 125 mL stirring flask. Moreover, obvious cytopathic effects (CPE) were observed in the suspended CPB cells post-infection with ISKNV and SCRV. This study provided a large-scale culture system of CPB cells for virus vaccine production.


2019 ◽  
Vol 91 (4) ◽  
Author(s):  
DANIEL OKAMURA ◽  
RODRIGO FORTES-SILVA ◽  
RENAN R. PAULINO ◽  
FELIPE G. DE ARAÚJO ◽  
DIEGO V. DA COSTA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document