Study of the Influence of Block Caving Underground Mining on the Stability of the Overlying Open Pit Mine

Author(s):  
Nathan Chimi Tegachouang ◽  
Victor Mwango Bowa ◽  
Xinping Li ◽  
Yi Luo ◽  
Wenping Gong
2018 ◽  
Vol 268 (2) ◽  
pp. 624-634 ◽  
Author(s):  
D. Whittle ◽  
M. Brazil ◽  
P.A. Grossman ◽  
J.H. Rubinstein ◽  
D.A. Thomas

2011 ◽  
Vol 84-85 ◽  
pp. 729-732 ◽  
Author(s):  
Jun Guo ◽  
De Qing Gan ◽  
Yu Zhang ◽  
Wei Hang Zhang

The paper analyzed major factors that influence the stability of open-pit slope and established the GM (1, N) model based on the program of Xingshan strip mine, which provided an effective method for evaluating the slope stability.


2020 ◽  
Vol 194 ◽  
pp. 04043
Author(s):  
Guo Xiaoli ◽  
Yan Jiancheng ◽  
Li Xueliang ◽  
Wen Xin ◽  
Li Xingli

The dumps in the open-pit mining area in the eastern grassland are prone to landslides due to the fragile ecological environment, so it is inevitable to reshape the dump slopes. In order to explore a more scientific method for slope shaping of open-pit mine dump, slope stability analysis were used to compare effect of three types of slope-type (wave-shaped, slope-shaped and step-shaped slope shaping method)in outside dumping site of Baori Hiller open-pit mine. The results show that the slope stability is negatively correlated with the slope angle, and the stability of different shaping slopes is realized as wave-shaped slope (F=2.711)> Slope-shaped slope(F=2.513)>Step-shaped slope(F=1.047), in which the wave type and slope type are all within the safe range, but the step type slope is unstable; in consideration of cost, stability and erosion resistance, it is better to set the slope angle of the dump to 15°.The wave-shaped shaping method of the natural dumping of the excavation field outside the Baori Hiller open-pit mine has the best effect and is worth promoting.


2013 ◽  
Vol 634-638 ◽  
pp. 3277-3281 ◽  
Author(s):  
Shi Guo Sun ◽  
Hong Yang ◽  
Chun Sheng Li ◽  
Bao Lin Zhang ◽  
Jia Wang ◽  
...  

The stability state of slope rock mass is relating to each other’s relative location during the transformation from open-pit to underground mining, it’s the most disadvantageous influence on the slope stability when the underground mining area is located in the toe of slope, and it’s the best influence as in the slope extracellular region. Slope stability factor changes with the geometric dimensions of underground mining increased, but not in direct proportion. Under the condition of constant geometric dimensions of mining area, the influence on slope stability is changing with the mining depth increased. Thus indicating that the influence on slope stability by underground mining has its spatial property, and to determine the specific influence value requires a combination of many factors, such as the relationship of relative spatial position, the geometric dimensions of mining area, engineering geological conditions and so on.


2011 ◽  
Vol 90-93 ◽  
pp. 342-346
Author(s):  
Bao Fu Duan ◽  
Meng Zhang ◽  
Yan Xin Lv ◽  
Cheng Bo Zhai ◽  
Xian He Weng

Slopes of open-pit mine and ash storage are likely to occur the geological disasters of landslides, collapse, ground deforms and so on, due to geological structure, mining activity, etc. Lai Zhou Power plant is going to use the open-pit of Cang Shang gold mine as the ash storage field. Therefore, the long-term stability of the slope is of great significance. Through the geological investigation and analysis of open-pit mine slope, the conditions of geological and tectonic are summarized. On the basis of field monitoring, the stability of the slope is analyzed in detail. The estimated results can better correspond to the actual stability of the open-pit slope. Feasible practical control scheme and monitoring program are put forward according to the engineering practice


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Zhigang Tao ◽  
Mengnan Li ◽  
Chun Zhu ◽  
Manchao He ◽  
Xiaohui Zheng ◽  
...  

Where a mined-out area underlies a slope, it is a direct threat to slope safety and stability. This is of particular concern where a mined-out area underlies the slope of an open-pit mine, and it has a serious impact on the design and safety measures used for the mine. If a mined-out area underlying the final slope of an open-pit mine is not treated adequately and at the appropriate time, it may cause the slip failure of the final slope during the service life of the mine, posing a serious threat to the safety of personnel and equipment during the stripping phase. In light of the potential for such problems, this paper analyzes the instability mode and failure characteristics of an open-pit slope near a mined-out area in China using geological field survey and the polar stereographic projection method. The scale span method, in combination with engineering analogy and consideration of open-pit mining technology, is then used to determine the critical safety thickness at which pretreatment of mined-out areas should be carried out. A pretreatment process to infill the mined-out area during construction of open-pit mine steps is put forward, and its effects on slope stability and reliability are comprehensively evaluated. The results show that circular sliding is the most appropriate instability mode for a slope near a mined-out area. The failure initiates through breakage in the roof of the mined-out area, which induces subduction sliding of the free face of the slope at the left boundary of the mined-out area and subsequent failure of the entire regional slope. Comprehensive analysis methods are used to determine that the critical safety thickness at which a mined-out area under the final open-pit slope should be pretreated is 24 m. The recommended treatment countermeasure is to transfer filling slurry into the mined-out area through drilling holes in benches. This can satisfy the stability and reliability requirements for the slope under different working conditions.


2021 ◽  
Author(s):  
Tianbai Zhou ◽  
Lingfan Zhang ◽  
Jian Cheng ◽  
Jianming Wang ◽  
Xiaoyu Zhang ◽  
...  

Abstract Due to long-term mining, a series of high and steep rock slopes have been formed in the open-pit mine. For high rock slopes, rainfall infiltration is the main cause of landslide. Therefore, the stability analysis of high rock slope under rainfall has become a key issue in the open-pit mine engineering. In this work, aiming at the high stress condition of high rock slope, the instantaneous internal friction angle and instantaneous cohesion of rock mass under different stress states are deduced, and the a nonlinear strength reduction method for high rock slope is established according to the relationship between normal stress and shear stress of rock mass under the Hoke-Brown criterion. The numerical calculation results show that the factor of safety (FOS) for high rock slope calculated by the proposed method is more reasonable. Taking the southwest slope of Dagushan Iron Mine as the research background, the safety factors of high rock slope under different rainfall conditions are calculated by COMSOL Multiphysics. And the stability analysis of high rock slope in open-pit mine under rainfall are carried out.


Sign in / Sign up

Export Citation Format

Share Document