Spatiotemporal genetic differentiation of Cuban natural populations of the pink shrimp Farfantepenaeus notialis

Genetica ◽  
2007 ◽  
Vol 133 (3) ◽  
pp. 283-294 ◽  
Author(s):  
Aymée Robainas-Barcia ◽  
Gloria Blanco ◽  
José A. Sánchez ◽  
Monique Monnerot ◽  
Michel Solignac ◽  
...  
Genetics ◽  
1982 ◽  
Vol 101 (2) ◽  
pp. 235-256
Author(s):  
Rama S Singh ◽  
Donal A Hickey ◽  
Jean David

ABSTRACT We have studied allozyme variation at 26 gene loci in nine populations of Drosophila melanogaster originating on five different continents. The distant populations show significant genetic differentiation. However, only half of the loci studied have contributed to this differentiation; the other half show identical patterns in all populations. The genetic differentiation in North American, European and African populations is correlated with the major climatic differences between north and south. These differences arise mainly from seven loci that show gene-frequency patterns suggestive of latitudinal clines in allele frequencies. The clinal variation is such that subtropical populations are more heterozygous than temperate populations. These results are discussed in relation to the selectionist and neutralist hypotheses of genetic variation in natural populations.


2021 ◽  
Author(s):  
Guai-qiang Chai ◽  
Yizhong Duan ◽  
Peipei Jiao ◽  
Zhongyu Du ◽  
Furen Kang

Abstract Background:Elucidating and revealing the population genetic structure, genetic diversity and recombination is essential for understanding the evolution and adaptation of species. Ammopiptanthus, which is an endangered survivor from the Tethys in the Tertiary Period, is the only evergreen broadleaf shrub grown in Northwest of China. However, little is known about its genetic diversity and underlying adaptation mechanisms. Results:Here, 111 Ammopiptanthus individuals collected from fifteen natural populations in estern China were analyzed by means of the specific locus amplified fragment sequencing (SLAF-seq). Based on the single nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) detected by SLAF-seq, genetic diversity and markers associated with climate and geographical distribution variables were identified. The results of genetic diversity and genetic differentiation revealed that all fifteen populations showed medium genetic diversity, with PIC values ranging from 0.1648 to 0.3081. AMOVA and Fst indicated that a low genetic differentiation existed among populations. Phylogenetic analysis showed that NX-BG and NMG-DQH of fifteen populations have the highest homology,while the genetic structure analysis revealed that these Ammopiptanthus germplasm accessions were structured primarily along the basis of their geographic collection, and that an extensive admixture occurred in each group. In addition, the genome-wide linkage disequilibrium (LD) and principal component analysis showed that Ammopiptanthus nanus had a more diverse genomic background, and all genetic populations were clearly distinguished, although different degrees of introgression were detected in these groups. Conclusion:Our study could provide guidance to the future design of association studies and the systematic utilization and protection of the genetic variation characterizing the Ammopiptanthus.


Genetics ◽  
1978 ◽  
Vol 88 (2) ◽  
pp. 367-390
Author(s):  
Ranajit Chakraborty ◽  
Paul A Fuerst ◽  
Masatoshi Nei

ABSTRACT With the aim of testing the validity of the mutation-drift hypothesis, we examined the pattern of genetic differentiation between populations by using data from Drosophila, fishes, reptiles, and mammals. The observed relationship between genetic identity and correlation of heterozygosities of different populations or species was generally in good agreement with the theoretical expectations from the mutation-drift theory, when the variation in mutation rate among loci was taken into account. In some species of Drosophila, however, the correlation was unduly high. The relationship between the mean and variance of genetic distance was also in good agreement with the theoretical prediction in almost all organisms. We noted that both the distribution of heterozygosity within species and the pattern of genetic differentiation between species can be explained by the same set of genetic parameters in each group of organisms. Alternative hypotheses for explaining these observations are discussed.


2020 ◽  
Vol 11 ◽  
Author(s):  
Francisco J. Jiménez-López ◽  
Pedro L. Ortiz ◽  
María Talavera ◽  
Montserrat Arista

Flower color polymorphism, an infrequent but phylogenetically widespread condition in plants, is captivating because it can only be maintained under a few selective regimes but also because it can drive intra-morph assortative mating and promote speciation. Lysimachia arvensis is a polymorphic species with red or blue flowered morphs. In polymorphic populations, which are mostly Mediterranean, pollinators prefer blue-flowered plants to the red ones, and abiotic factors also favors blue-flowered plants. We hypothesize that the red morph is maintained in Mediterranean areas due to its selfing capacity. We assessed inbreeding depression in both color morphs in two Mediterranean populations and genetic diversity was studied via SSR microsatellites in 20 natural populations. Results showed that only 44–47% of selfed progeny of the red plants reached reproduction while about 72–91% of blue morph progeny did it. Between-morph genetic differentiation was high and the red morph had a lower genetic diversity and a higher inbreeding coefficient, mainly in the Mediterranean. Results suggest that selfing maintaining the red morph in Mediterranean areas despite its inbreeding depression. In addition, genetic differentiation between morphs suggests a low gene flow between them, suggesting reproductive isolation.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1287
Author(s):  
Rahmah N. Al-Qthanin ◽  
Samah A. Alharbi

Avicennia marina (Forssk.) Vierh is distributed in patches along the Farasan archipelago coast and is the most common mangrove species in the Red Sea. However, to date, no studies have been directed towards understanding its genetic variation in the Farasan archipelago. In this investigation, genetic variations within and among natural populations of Avicennia marina in the Farasan archipelago were studied using 15 microsatellite markers. The study found 142 alleles on 15 loci in nine populations. The observed (Ho) and expected (He) heterozygosity values were 0.351 and 0.391, respectively, which are much lower than those of earlier studies on A. marina in the Arabian Gulf. An inbreeding effect from self-pollination might explain its heterozygote deficiency. Population genetic differentiation (FST = 0.301) was similar to other mangrove species. Our findings suggest that the sea current direction and coastal geomorphology might affect genetic dispersal of A. marina. The more isolated populations with fewer connections by sea currents exhibited lower genetic variation and differentiation between populations. The genetic clustering of populations fell into three main groups—Group 1 (populations of Farasan Alkabir Island), Group 2 (populations of Sajid Island), and Group 3 (mix of one population of Farasan Alkabir Island and a population of Zifaf Island). More genetic variation and less genetic differentiation occurred when the population was not isolated and had a direct connection with sea currents. Both of these factors contributed to limited propagule dispersal and produced significant structures among the population. It is expected that the results of this research will be useful in determining policy and species-conservation strategies and in the rehabilitation of A. marina mangrove stands on the Farasan islands in an effort to save this significant natural resource.


2004 ◽  
Vol 144 (2) ◽  
pp. 327-333 ◽  
Author(s):  
Y. Borrell ◽  
G. Espinosa ◽  
J. Romo ◽  
G. Blanco ◽  
E. V�zquez ◽  
...  

1996 ◽  
Vol 26 (8) ◽  
pp. 1454-1462 ◽  
Author(s):  
Naoki Tani ◽  
Nobuhiro Tomaru ◽  
Masayuki Araki ◽  
Kihachiro Ohba

Japanese stone pine (Pinuspumila Regel) is a dominant species characteristic of alpine zones of high mountains. Eighteen natural populations of P. pumila were studied in an effort to determine the extent and distribution of genetic diversity. The extent of genetic diversity within this species was high (HT = 0.271), and the genetic differentiation among populations was also high (GST = 0.170) compared with those of other conifers. In previous studies of P. pumila in Russia, the genetic variation within the species was also high, but the genetic differentiation among populations was low. We infer that this difference originates from differences in geographic distribution and ecological differences between the two countries. The genetic variation within each population tended, as a whole, to be smaller within marginal southern populations than within northern populations. Genetic relationships among populations reflect the geographic locations, as shown by unweighted pair-group method with arithmetic means and neighbor-joining phylogenetic trees.


Sign in / Sign up

Export Citation Format

Share Document