An Apparatus for the Directional Spectral Emissivity Measurement in the Near Infrared Band

2021 ◽  
Vol 42 (6) ◽  
Author(s):  
Kun Yu ◽  
Ruirui Tong ◽  
Kaihua Zhang ◽  
Yanlei Liu ◽  
Yufang Liu
Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 842
Author(s):  
Alejandro Vásquez ◽  
Francisco Pérez ◽  
Maximiliano Roa ◽  
Ignacio Sanhueza ◽  
Hugo Rojas ◽  
...  

In this paper, a novel optical technique for following the progress of the blister copper desulfurization process is presented. The technique is based on the changes observed in the continuous spectrum of the visible–near-infrared (VIS–NIR) radiation that the blister melt emits while the chemical reactions of the sulfur elimination process are taking place. Specifically, the proposed technique uses an optical probe composed of an optical fiber, a collimating lens, and a quartz tube, which is immersed in the melt. This optical probe provides a field of view of the blowing zone where the desulfurization reaction occurs. The experimental results show that the melt VIS–NIR total irradiance evolves inversely to the SO2 concentration reported by a gas analyzer based on differential optical absorption spectroscopy. Furthermore, the blister copper spectral emissivity as well as the total emissivity observed throughout the process show strong correlation with the sulfur content during desulfurization reaction.


1965 ◽  
Vol 240 (6) ◽  
pp. 2694-2698 ◽  
Author(s):  
Quentin H. Gibson ◽  
Colin Greenwood

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4158
Author(s):  
Haiyan Yu ◽  
Haochun Zhang ◽  
Heming Wang ◽  
Dong Zhang

Currently, there are few studies on the influence of microscale thermal radiation on the equivalent thermal conductivity of microscale porous metal. Therefore, this paper calculated the equivalent thermal conductivity of high-porosity periodic cubic silver frame structures with cell size from 100 nm to 100 µm by using the microscale radiation method. Then, the media radiation characteristics, absorptivity, reflectivity and transmissivity were discussed to explain the phenomenon of the radiative thermal conductivity changes. Furthermore, combined with spectral radiation properties at the different cross-sections and wavelength, the radiative transmission mechanism inside high-porosity periodic cubic frame silver structures was obtained. The results showed that the smaller the cell size, the greater radiative contribution in total equivalent thermal conductivity. Periodic cubic silver frames fluctuate more in the visible band and have better thermal radiation modulation properties in the near infrared band, which is formed by the Surface Plasmon Polariton and Magnetic Polaritons resonance jointly. This work provides design guidance for the application of this kind of periodic microporous metal in the field of thermal utilization and management.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ning Cao ◽  
Shuqiang Lyu ◽  
Miaole Hou ◽  
Wanfu Wang ◽  
Zhenhua Gao ◽  
...  

AbstractEnvironmental changes and human activities can cause serious degradation of murals, where sootiness is one of the most common problems of ancient Chinese indoor murals. In order to improve the visual quality of the murals, a restoration method is proposed for sootiness murals based on dark channel prior and Retinex by bilateral filter using hyperspectral imaging technology. First, radiometric correction and denoising through band clipping and minimum noise fraction rotation forward and inverse transform were applied to the hyperspectral data of the sootiness mural to produce its denoised reflectance image. Second, a near-infrared band was selected from the reflectance image and combined with the green and blue visible bands to produce a pseudo color image for the subsequent sootiness removal processing. The near-infrared band is selected because it is better penetrating the sootiness layer to a certain extent comparing to other bands. Third, the sootiness covered on the pseudo color image was preliminarily removed by using the method of dark channel prior and by adjusting the brightness of the image. Finally, the Retinex by bilateral filter was performed on the image to get the final restored image, where the sootiness was removed. The results show that the images restored by the proposed method are superior in variance, average gradient, information entropy and gray scale contrast comparing to the results from the traditional methods of homomorphic filtering and Gaussian stretching. The results also show the highest score in comprehensive evaluation of edges, hue and structure; thus, the method proposed can support more potential studies or sootiness removal in real mural paintings with more detailed information. The method proposed shows strong evidence that it can effectively reduce the influence of sootiness on the moral images with more details that can reveal the original appearance of the mural and improve its visual quality.


2021 ◽  
Vol 48 (7) ◽  
pp. 0706001
Author(s):  
张文 Zhang Wen ◽  
白冰冰 Bai Bingbing ◽  
张砚曾 Zhang Yanzeng ◽  
陈聪 Chen Cong ◽  
邵齐元 Shao Qiyuan ◽  
...  

Author(s):  
Kai Yue ◽  
Yongjian Niu ◽  
Xiaoming Guo ◽  
Xinxin Zhang

As one of the basic parameters characterizing the radiation heat transfer of material surface, the emissivity is of important significance to perform non-contact thermometry research. Comparing with the traditional measurement method, measurement method of spectral emissivity based on the Fourier spectrometer has many advantages such as high accuracy and fast measurement. However, the measurement accuracy is subject to the influence of the radiant energy and the spectrometer electromagnetic radiation noise resulted from the environment. In this study, the geometric factor of the sample was defined and the reflectance of the background radiation in the surface of the sample was applied to accurately determine the energy of the radiation received on the detector. An emissivity measurement model was established and a mathematical formula was derived in this study to eliminate the influence of the background radiation noise. To improve the measurement accuracy of the surface temperature of samples, a heat conduction model is established so that the radiation heat transfer of the sample surface can be calculated and the surface temperature of the sample was obtained by equilibrium calculation. Moreover, we conducted emissivity measurement of black paint samples with high emissivity using the Fourier spectrometer and the proposed model is proven valid. Comparing the experimental results modified by the eliminating calculation formula with the experimental data obtained by the monochromator, it was found that there was good qualitative agreement between two sets of results.


2011 ◽  
Vol 20 (03) ◽  
pp. 687-695 ◽  
Author(s):  
DOMINICK J. BINDL ◽  
MICHAEL S. ARNOLD

A photovoltaic photodetector harnessing near infrared band gap absorption by thin films of post-synthetically sorted semiconducting single walled carbon nanotubes ( s -SWCNTs) is described. Peak specific detectivity of 6×1011 Jones at -0.1 V bias at 1210 nm is achieved using a heterojunction device architecture: indium tin oxide/ ca. 5 nm s -SWCNT / 120 nm C60 / 10 nm 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) / Ag. The photodiodes are characterized by a series resistance of 2.9 Ω cm2 and a rectification ratio of 104 at ±1V. These results are expected to guide the exploration of new classes of solution-processable, mechanically flexible, integrable, thin film photovoltaic photodetectors with tunable sensitivity in the visible and infrared spectra based on semiconducting carbon nanotubes.


2022 ◽  
Vol 14 (2) ◽  
pp. 386
Author(s):  
Léa Schamberger ◽  
Audrey Minghelli ◽  
Malik Chami ◽  
François Steinmetz

The invasive species of brown algae Sargassum gathers in large aggregations in the Caribbean Sea, and has done so especially over the last decade. These aggregations wash up on shores and decompose, leading to many socio-economic issues for the population and the coastal ecosystem. Satellite ocean color data sensors such as Sentinel-3/OLCI can be used to detect the presence of Sargassum and estimate its fractional coverage and biomass. The derivation of Sargassum presence and abundance from satellite ocean color data first requires atmospheric correction; however, the atmospheric correction procedure that is commonly used for oceanic waters needs to be adapted when dealing with the occurrence of Sargassum because the non-zero water reflectance in the near infrared band induced by Sargassum optical signature could lead to Sargassum being wrongly identified as aerosols. In this study, this difficulty is overcome by interpolating aerosol and sunglint reflectance between nearby Sargassum-free pixels. The proposed method relies on the local homogeneity of the aerosol reflectance between Sargassum and Sargassum-free areas. The performance of the adapted atmospheric correction algorithm over Sargassum areas is evaluated. The proposed method is demonstrated to result in more plausible aerosol and sunglint reflectances. A reduction of between 75% and 88% of pixels showing a negative water reflectance above 600 nm were noticed after the correction of the several images.


Sign in / Sign up

Export Citation Format

Share Document