Mid-Infrared Dual-Band Absorber Based on Nested Metamaterial Structure

Author(s):  
Z. Li ◽  
J. Li ◽  
Y. Zhang ◽  
Y. Zhai ◽  
X. Chu ◽  
...  
2016 ◽  
Vol 55 (9) ◽  
pp. 2169 ◽  
Author(s):  
You Lü ◽  
Xin He ◽  
Zhong-Hui Wei ◽  
Zhi-Yuan Sun ◽  
Song-Tao Chang

2015 ◽  
Vol 32 (6) ◽  
pp. 068101 ◽  
Author(s):  
Yu-Ping Zhang ◽  
Tong-Tong Li ◽  
Huan-Huan Lv ◽  
Xiao-Yan Huang ◽  
Xiao Zhang ◽  
...  

2012 ◽  
Vol 100 (21) ◽  
pp. 211106 ◽  
Author(s):  
Jianfei Wang ◽  
Timothy Zens ◽  
Juejun Hu ◽  
Piotr Becla ◽  
Lionel C. Kimerling ◽  
...  

2007 ◽  
Vol 1055 ◽  
Author(s):  
Brandon Scott Passmore ◽  
Jiang Wu ◽  
Eric A. Decuir ◽  
Omar Manasreh ◽  
Peter M. Lytvyn ◽  
...  

ABSTRACTThe interband and intersubband transitions in self-assembled InAs and In0.3Ga0.7As quantum dots grown by molecular beam epitaxy have been investigated for their use in visible, near-, and mid-infrared detection applications. Devices based on InAs quantum dots embedded in an InxGa1−xAs (0 to 0.3) graded well and In0.3Ga0.7As quantum dots were fabricated in order to measure the temperature dependent (77 – 300 K) photoresponse. The dark current was measured in the temperature range of 77 to 300 K for the devices. Room temperature photoresponse ranging between 0.6 to 1.3 μm was observed for the InAs and In0.3Ga0.7As quantum dot photodetectors. Furthermore, a dual band photoresponse in the visible, near-, and mid-infrared spectral regions for both devices was observed at 77 K. Using a self-consistent solution of Schrödinger-Poisson equations, the peak position energies of the interband and intersubband transitions in the two multi-color quantum dot infrared photodetector structures was calculated.


2008 ◽  
Author(s):  
Huafeng Liang ◽  
Jianjun Lai ◽  
Zhiping Zhou ◽  
Li Li
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zichun Li ◽  
Jinhua Li ◽  
Ye Zhang ◽  
Yingjiao Zhai ◽  
Xueying Chu ◽  
...  

Due to the problems that the metal pattern layer on the top of the traditional metamaterial structure is easy to be oxidized and easy to fall off, in this paper, a novel semiconductor metamaterial nanostructure composed of a periodic array of GaAs-SiO2 cubes and a gold (Au) film has been proposed. Using FDTD solutions software to prove this metamaterial structure can achieve ultranarrow dual-band, nearly perfect absorption with a maximum absorbance of 99% and a full-width at half-maximum (FWHM) value that is less than 20 nm in the midinfrared region. The refractive index sensitivity is demonstrated by changing the background index and analyzing the absorption performance. It had been proved that this absorber has high sensitivity (2000/RIU and 1300/RIU). Using semiconductor material instead of the metal material of the top pattern layer can effectively inhibit the performance failure of the metamaterial structure caused by metal oxidation. The proposed narrow, dual-band metamaterial absorber shows promising prospects in applications such as infrared detection and imaging.


Sign in / Sign up

Export Citation Format

Share Document