Low-temperature damping behavior of cast iron with aluminum addition

2005 ◽  
Vol 40 (7) ◽  
pp. 1773-1775 ◽  
Author(s):  
Xinbao Liu ◽  
Susumu Takamori ◽  
Yoshiaki Osawa ◽  
Fuxing Yin
2020 ◽  
Vol 27 (2) ◽  
pp. 190-199 ◽  
Author(s):  
Gülşah Aktaş Çelik ◽  
Maria-Ioanna T. Tzini ◽  
Şeyda Polat ◽  
Ş. Hakan Atapek ◽  
Gregory N. Haidemenopoulos

1984 ◽  
Vol 34 ◽  
Author(s):  
P. Poyet ◽  
P. Couchinave ◽  
P. I. Dancoisne

ABSTRACTFor an economical purpose, an austenitic spheroidal graphite cast iron grade, containinq nickel-manganese, has been developed to replace Ni-Resist cast iron, type D2M, for cryogenic applications.Several tests were carried out to produce semi-industrial. heats of 200 kg so as to cast samples with a thickness ranging between 25 and 75 mm, and a variable nickel and manganese content. The resulting grades were compared each other and with Ni-Resist cast irons, before and after heat treatment, for their metallographic structure, their hardness, their mechanical tensile properties at room temperature and their impact values at temperatures down to - 150° C.The results show that it is possible to produce cast iron grades with 7 to 10 % manganese and 9 to 11 % nickel contents, featuring, at quenched state, better mechanical tensile properties at room temperature than Ni- Resist D2M with a 22–25 % Ni content, for roughly equivalent impact values at low temperatures. For as-cast material, the properties obtained vary with material thickness, and ductility is steeply decreasing for thicknesses under 30 mm.Weldability of Ni/Mn cast iron can be compared to Ni-Resist D2M weldability; machinability however seems more difficult, especially when boring quenched material.Generally speaking, the overall properties of these new grades and their lower cost-price if compared to Ni-Resist cast iron, should lead to promising outlets for low temperature uses and/or applications requiring high-level mechanical properties.


World Science ◽  
2019 ◽  
Vol 1 (1(41)) ◽  
pp. 15-23
Author(s):  
Подрезов Ю. М. ◽  
Романко П. М. ◽  
Холявко В. В. ◽  
Марченко Н. М.

Application of ductile cast iron ADI is feasible and cost-effective, provided that there is a clear understanding of the mechanisms for the formation of their high complex mechanical properties. The use of such materials for the production of variable parts of machinery, or in other units of automobile and machine building will significantly extend the life of the equipment. It is established that the level of mechanical characteristics of the ADI cast iron varies in full accordance with the theoretical concepts of the influence of the tempering temperature on the formation of mechanical properties of such materials. The previous plastic deformation does not affect the mechanism of formation of pseudo-elasticity. The tendency to dampening increases with an increase in the temperature of isothermal quenching. The damping behavior of a material is a consequence of the formation of pseudo-elastic twins in the structure of the transformed martensite.


2020 ◽  
Vol 856 ◽  
pp. 92-98
Author(s):  
Janthira Chantarach ◽  
Rungsinee Canyook

The purpose of the study was to inspect microstructure, mechanical properties and impact toughness of ductile cast iron grade FCD450 produced by austempering process. The study focused on austempering parameter, which effected impact toughness of material at low temperature. The FCD450 was initially temperature austenized at 885°C (1625˚F) for 2 hours. Austempering was carried out at three different temperatures of 271°C (520˚F), 313°C (560˚F) and 357°C (675˚F). The austempering temperature were varied at 1.5, 2.5 and 3.5 hours. X-ray diffraction was showed that the austempered ductile cast iron (ADI) microstructure consists of austenite and ferrite. The results showed that when austempered at 357°C (675˚F) for 2.5 hours has highest hardness and impact energy at low temperature. The dimple ductile fracture of ADI fracture surfaces was revealed by scanning electron microscope (SEM).


1985 ◽  
Vol 27 (9) ◽  
pp. 712-713
Author(s):  
S. N. Ulanovskaya ◽  
M. N. Monastyrskaya ◽  
G. K. Vanzha ◽  
V. I. Yaroshenko

2001 ◽  
Vol 41 (4) ◽  
pp. 372-380 ◽  
Author(s):  
P. J. J. Ratto ◽  
A. F. Ansaldi ◽  
V. E. Fierro ◽  
F. R. Agüera ◽  
H. N. Alvarez Villar ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Ghulam Moeen Uddin ◽  
Muhammad Sajid Kamran ◽  
Jawad Ahmad ◽  
Muhammad Ghufran ◽  
Muhammad Asim ◽  
...  

Piston ring and cylinder liner (PRCL) interface is a major contributor to the overall frictional and wear losses in an IC engine. Physical vapor deposition (PVD) based ceramic coatings on liners and rings are being investigated to address these issues. High temperature requirements for applications of conventional coating systems compromise the mechanical properties of the substrate materials. In the current study, experimental investigation of tribo-mechanical properties is conducted for various titanium nitride (TiN) coated PRCL interfaces in comparison with a commercial PRCL system. Low-temperature PVD based TiN coating is successfully achieved on the grey cast iron cylinder liner samples. Surface roughness of the grey cast iron cylinder liner substrates and the thickness of TiN coating are varied. A comprehensive comparative analysis of various PRCL interfaces is presented and all the trade-offs between various mechanical and tribological performance parameters are summarized. Coating thickness between 5 and 6 micrometres reports best tribo-mechanical behaviour. Adhesion and hardness are found to be superior for the TiN coatings deposited on cylinder liner samples with higher roughness, i.e., ~ 5-micron Ra. Maximum 62 % savings on the COF is reported for a particular PRCL system. Maximum 97% saving in cylinder liner wear rate is reported for another PRCL system.


Sign in / Sign up

Export Citation Format

Share Document