Water absorption, mechanical, and thermal properties of halloysite nanotube reinforced vinyl-ester nanocomposites

2013 ◽  
Vol 48 (12) ◽  
pp. 4260-4273 ◽  
Author(s):  
A. Alhuthali ◽  
I. M. Low
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chaitra Venkatesh ◽  
Yuanyuan Chen ◽  
Zhi Cao ◽  
Shane Brennan ◽  
Ian Major ◽  
...  

Abstract Poly (lactic acid)/halloysite nanotube (PLA/HNT) nanocomposites have been studied extensively over the past few years owing to the interesting properties of the polymer, PLA, and the nanoclay, HNT, individually and as composites. In this paper, the influence of the screw speed during extrusion was investigated and was found to have a significant impact on the mechanical and thermal performance of the extruded PLA/HNT nanocomposites. To determine the effect of screw speed on PLA/HNT nanocomposites, 5 and 10 wt% of HNTs were blended into the PLA matrix through compounding at screw speeds of 40, 80, and 140 rpm. Virgin PLA was compounded for comparison. The resultant polymer melt was quench cooled onto a calendar system to produce composite films which were assessed for mechanical, thermal, chemical, and surface properties. Results illustrate that in comparison to 40 and 80 rpm, the virgin PLA when compounded at 140 rpm, indicated a significant increase in the mechanical properties. The PLA/HNT 5 wt% nanocomposite compounded at 140 rpm showed significant improvement in the dispersion of HNTs in the PLA matrix which in turn enhanced the mechanical and thermal properties. This can be attributed to the increased melt shear at higher screw speeds.


2017 ◽  
Vol 751 ◽  
pp. 521-526 ◽  
Author(s):  
Jiraphorn Mahawan ◽  
Somchai Maneewan ◽  
Tanapon Patanin ◽  
Atthakorn Thongtha

This research concentrates to the effect of changing sand proportion on the physical, mechanical and thermal properties of building wall materials (Cellular lightweight concrete). The density, water absorption and compressive strength of the 7.0 cm x 7.0 cm x 7.0 cm concrete sample were studied. It was found that there are an increase of density and a reduction of water absorption with an increase of sand content. The higher compressive strength can be confirmed by higher density and lower water absorption. The physical and mechanical properties of lightweight concrete conditions conformed to the Thai Industrial Standard 2601-2013. The phases of CaCO3 and calcium silicate hydrate (C-S-H) in the material indicate an important factor in thermal insulating performance.


2019 ◽  
Vol 25 (s2) ◽  
pp. E114-E128 ◽  
Author(s):  
Balasubramaniam Stalin ◽  
Nagaraj Nagaprasad ◽  
Venkataraman Vignesh ◽  
Manickam Ravichandran

Fuel ◽  
2014 ◽  
Vol 121 ◽  
pp. 240-249 ◽  
Author(s):  
Matthew Labella ◽  
Steven E. Zeltmann ◽  
Vasanth Chakravarthy Shunmugasamy ◽  
Nikhil Gupta ◽  
Pradeep K. Rohatgi

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 336 ◽  
Author(s):  
Sylwia Członka ◽  
Anna Strąkowska ◽  
Krzysztof Strzelec ◽  
Agnieszka Adamus-Włodarczyk ◽  
Agnė Kairytė ◽  
...  

Rigid polyurethane foams (RPUFs) were successfully modified with different weight ratios (0.5 wt%, 1.5 wt% and 5 wt%) of APIB-POSS and AEAPIB-POSS. The resulting foams were evaluated by their processing parameters, morphology (Scanning Electron Microscopy analysis, SEM), mechanical properties (compressive test, three-point bending test and impact strength), viscoelastic behavior (Dynamic Mechanical Analysis, DMA), thermal properties (Thermogravimetric Analysis, TGA, and thermal conductivity) and application properties (contact angle, water absorption and dimensional analysis). The results showed that the morphology of modified foams is significantly affected by the type of the filler and filler content, which resulted in inhomogeneous, irregular, large cell shapes and further affected the physical and mechanical properties of resulting materials. RPUFs modified with APIB-POSS represent better mechanical and thermal properties compared to the RPUFs modified with AEAPIB-POSS. The results showed that the best results were obtained for RPUFs modified with 0.5 wt% of APIB-POSS. For example, in comparison with unfilled foam, compositions modified with 0.5 wt% of APIB-POSS provide greater compression strength, better flexural strength and lower water absorption.


Sign in / Sign up

Export Citation Format

Share Document