A novel low-concentration isopropanol gas sensor based on Fe-doped ZnO nanoneedles and its gas sensing mechanism

2020 ◽  
Vol 56 (4) ◽  
pp. 3230-3245
Author(s):  
Yifan Luo ◽  
Ahmadou Ly ◽  
Driss Lahem ◽  
Chao Zhang ◽  
Marc Debliquy
2021 ◽  
Vol 341 ◽  
pp. 130015
Author(s):  
Wenbo Qin ◽  
Zhenyu Yuan ◽  
Hongliang Gao ◽  
Renze Zhang ◽  
Fanli Meng

2022 ◽  
Author(s):  
Tianchen Jiang ◽  
xin liu ◽  
jianbo sun

Abstract ZnO quantum dots sensitized SnO2 porous nanowires were fabricated and designed for UV excitation gas sensor. The ZnO/SnO2 composite (SZQ1%) with the molar proportion of 1:100 exhibits excellent sensing properties to NO2 gas under UV irradiation at 40oC. The humidity stability of SZQ1% was also measured and discussed by DC reversed circuit and complex impedance curves. The gas sensing mechanism is well discussed and illustrated to the ZnO quantum dots sensitized and the increased photo-generated carriers under UV irradiation.


2020 ◽  
Vol 16 (2) ◽  
pp. 187-195
Author(s):  
Tang-Yu Lai ◽  
Te-Hua Fang ◽  
Yu-Jen Hsiao ◽  
En-Yu Kuo

Background:: A sensing material of zinc oxide (ZnO) was investigated for its use in the electrospun nanofibers for gas sensing. The metal oxide semiconductor gas sensor response is caused by the oxygen that undergoes a chemical reaction on the surface of an oxide, resulting in a change in the measured resistance. Objective:: One-dimensional nanofibers gas sensor have high sensitivity and diverse selectivity. Methods:: One-dimensional nanofiber by an electrospinning method was collected and a sensing membrane was formed. In addition, the gas sensing mechanism was discussed and verified by X-ray photoelectron spectroscopy (XPS). Results:: The ZnO nanofiber membrane had an optimum crystalline phase with a lattice spacing of 0.245 nm and a non-woven fabric structure at a calcination temperature of 500°C, whereas the nanofiber diameter and membrane thickness were about 100 nm and 8 μm, respectively. At an operating temperature of 200°C, the sensing material exhibited good recovery and reproducibility in response to Carbon monoxide (CO), and the concentration was also highly discernible. In addition, the reduction in the peak of OIII at 531.5 to 532.5 eV according to the analysis of XPS was consistent with the description of the sensing mechanism. Conclusion:: The gas sensor of ZnO nanofiber membranes has high sensitivity and diverse selectivity, which can be widely applied in potential applications in various sensors and devices.


RSC Advances ◽  
2016 ◽  
Vol 6 (52) ◽  
pp. 47178-47184 ◽  
Author(s):  
Arvind Kumar ◽  
Amit Sanger ◽  
Ashwani Kumar ◽  
Ramesh Chandra

CO gas sensing mechanism of SnO2/CuO bilayer sensor.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3147 ◽  
Author(s):  
Chang Wang ◽  
Shaochong Lei ◽  
Xin Li ◽  
Shixi Guo ◽  
Ping Cui ◽  
...  

A hybrid structure gas sensor of reduced graphene oxide (RGO) decorated graphene (RGO-Gr) is designed for ultra-low concentration ammonia detection. The resistance value of the RGO-Gr hybrid is the indicator of the ammonia concentration and controlled by effective charge transport from RGO to graphene after ammonia molecule adsorption. In this hybrid material, RGO is the adsorbing layer to catch ammonia molecules and graphene is the conductive layer to effectively enhance charge/electron transport. Compared to a RGO gas sensor, the signal-to-noise ratio (SNR) of the RGO-Gr is increased from 22 to 1008. Meanwhile, the response of the RGO-Gr gas sensor is better than that of either a pristine graphene or RGO gas sensor. It is found that the RGO reduction time is related to the content of functional groups that directly reflect on the gas sensing properties of the sensor. The RGO-Gr gas sensor with 10 min reduction time has the best gas sensing properties in this type of sensor. The highest sensitivity is 2.88% towards 0.5 ppm, and the ammonia gas detection limit is calculated to be 36 ppb.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 435 ◽  
Author(s):  
Guodong Zhao ◽  
Jingyue Xuan ◽  
Xiaolin Liu ◽  
Fuchao Jia ◽  
Yuping Sun ◽  
...  

A low-cost and high-performance gas sensor was fabricated by the in-situ growing of ZnO nanoclusters (NCs) arrays on the etched fluorine-doped tin dioxide (FTO) glass via a facile dip-coating and hydrothermal method. Etched FTO glass was used as a new-type gas-sensing electrode due to its advantages of being low cost and having excellent thermal and chemical stability. ZnO NCs are composed of multiple ZnO nanorods and can provide adequate lateral contacts to constitute the paths required for the gas-sensing tests simultaneously, which can provide many advantageous point junctions for the detection of low-concentration gases. The gas-sensing tests indicate that the ZnO NCs gas sensor has good selectivity and a high response for the low-concentration H2S gas. The sensing response has reached 3.3 for 500 ppb H2S at 330 °C. The excellent gas-sensing performances should be attributed to the large specific surface area of in-situ grown ZnO NCs, the perfect ohmic contact between ZnO NCs and FTO electrode and the variation of grain boundary barrier at the cross-linked junctions of multiple nanorods. In addition, the detailed effect of work temperature and gas concentration on gas-sensing, the stability of gas sensors and the corresponding response mechanism are also discussed in the present paper.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2710
Author(s):  
Jianghua Luo ◽  
Yishan Jiang ◽  
Feng Xiao ◽  
Xin Zhao ◽  
Zheng Xie

Nowadays, despite the easy fabrication and low cost of metal oxide gas sensors, it is still challenging for them to detect gases at low concentrations. In this study, resistance-matched p-type Cu2O and n-type Ga-doped ZnO, as well as p-type CdO/LaFeO3 and n-type CdO/Sn-doped ZnO sensors were prepared and integrated into p + n sensor arrays to enhance their gas-sensing performance. The materials were characterized by scanning electron microscopy, transmittance electron microscopy, and X-ray diffractometry, and gas-sensing properties were measured using ethanol and acetone as probes. The results showed that compared with individual gas sensors, the response of the sensor array was greatly enhanced and similar to the gas response product of the p- and n-type gas sensors. Specifically, the highly sensitive CdO/LaFeO3 and CdO/Sn-ZnO sensor array had a high response of 21 to 1 ppm ethanol and 14 to 1 ppm acetone, with detection limits of <0.1 ppm. The results show the effect of sensor array integration by matching the two sensor resistances, facilitating the detection of gas at a low concentration.


Author(s):  
Xiao Deng ◽  
Jie Hu ◽  
Shengbo Sang ◽  
Pengwei Li ◽  
Gang Li ◽  
...  

Nanoscale ◽  
2014 ◽  
Vol 6 (14) ◽  
pp. 8292-8299 ◽  
Author(s):  
Prabhakar Rai ◽  
Ji-Wook Yoon ◽  
Hyun-Mook Jeong ◽  
Su-Jin Hwang ◽  
Chang-Hoon Kwak ◽  
...  

Highly selective and sensitive H2S sensor was designed using Au@NiO yolk–shell nanoreactors, and its gas sensing mechanism was suggested.


Sign in / Sign up

Export Citation Format

Share Document