Enhanced structural, optical, electrochemical and magnetic behavior on manganese doped tin oxide nanoparticles via chemical precipitation method

2019 ◽  
Vol 30 (8) ◽  
pp. 7606-7617 ◽  
Author(s):  
S. Sivakumar ◽  
E. Manikandan
2021 ◽  
Vol 10 (1) ◽  
pp. 14-18
Author(s):  
V.Kayathri V.Kayathri ◽  
K.Kousalya K.Kousalya ◽  
A.Mafeena A.Mafeena ◽  
M.Monisha M.Monisha ◽  
S.Naga Nandhini S.Naga Nandhini ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5889
Author(s):  
Jeyapaul Sam Jebakumar ◽  
Asokan Vimala Juliet

The exhaust gases from various sources cause air pollution, which is a leading contributor to the global disease burden. Hence, it has become vital to monitor and control the increasing pollutants coming out of the various sources into the environment. This paper has designed and developed a sensor material to determine the amount of carbon monoxide (CO), which is one of the major primary air pollutants produced by human activity. Nanoparticle-based sensors have several benefits in sensitivity and specificity over sensors made from traditional materials. In this study, tin oxide (SnO2), which has greater sensitivity to the target gas, is selected as the sensing material which selectively senses only CO. Tin oxide nanoparticles have been synthesized from stannous chloride dihydrate chemical compound by chemical precipitation method. Palladium, at the concentration of 0.1%, 0.2%, and 0.3% by weight, was added to tin oxide and the results were compared. Synthesized samples were characterized by X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) techniques. XRD revealed the tetragonal structure of the SnO2 nanoparticles and FESEM analysis showed the size of the nanoparticles to be about 7–20 nm. Further, the real-time sensor testing was performed and the results proved that the tin oxide sensor, doped with 0.2% palladium, senses the CO gas more efficiently with greater sensitivity.


2018 ◽  
Vol 4 (5) ◽  
pp. 564-566
Author(s):  
I. Merlin ◽  
C. Vedhi ◽  
K. Muthu ◽  
A. Syed Mohamed

A systematic study on the preparation of tin oxide nanoparticles using the precipitation method has been conducted. The preparation of nanomaterials was by varying reaction parameters such as pH and temperature. The tin oxide nanoparticles were characterized by using AFM, SEM, XRD and UV-Vis. Particle size was obtained using XRD studies the value is 28.8 nm, 35.2 nm, 30.8 nm and 33.8 nm. It was found that the alteration of pH and temperature changes the particle size.


2012 ◽  
Author(s):  
Brajesh Nandan ◽  
B. Venu Gopal ◽  
S. Amirthapandian ◽  
Sumita Santra ◽  
B. K. Panigrahi ◽  
...  

Author(s):  
SHRADDHA SHIRSAT ◽  
DHANASHRI PAWAR ◽  
NISHITA JAIN ◽  
JAYANT PAWAR ◽  
VIDYA S TALE ◽  
...  

Objective: To determine antimicrobial efficacy of copper oxide nanoparticles (CuO NPs) against Streptococcus sp. and Staphylococcus sp. Methods: CuO NPs were synthesized using chemical precipitation method. The reducing agent, 0.1 M NaOH, was used along with 100 mM CuSO4 precursor for the synthesis of CuO NPs. The characterization of CuO NPs was done by ultraviolet-visible spectroscopy and scanning electron microscopy (SEM) to study optical and morphological characteristics, correspondingly. The identification of bacterial cultures was done through microscopic and biochemical studies. Antibacterial efficacy of CuO NPs was determined against Streptococcus sp. and Staphylococcus sp. by qualitative and quantitative methods through anti-well diffusion assay and broth dilution method, respectively. Results: The absorption spectrum and band gap were found to be at 260 nm and 4.77 eV, respectively. The SEM image of CuO NPs shows cluster of nanostructures having width of individual clusters in the range of 100 nm–500 nm. CuO NPs showed inhibition at a concentration ranging from 60 μg/mL to 1000 μg/mL. Conclusion: Finally, CuO NPs can be used as effective antibacterial agent against Streptococcus sp. and Staphylococcus sp. and may have applications in medical microbiology.


Sign in / Sign up

Export Citation Format

Share Document