Ultrathin structural BiOI with surface oxygen vacancies for improved photocatalytic degradation of organic pollutants

2019 ◽  
Vol 30 (14) ◽  
pp. 13425-13433
Author(s):  
Yang Bai ◽  
Kai Zhang ◽  
Xian Shi ◽  
Xing Li
2019 ◽  
Vol 9 (12) ◽  
pp. 3193-3202 ◽  
Author(s):  
Li Guo ◽  
Qiang Zhao ◽  
Huidong Shen ◽  
Xuanxuan Han ◽  
Kailai Zhang ◽  
...  

Au NPs were anchored on Bi2MoO6 with rich SOVs to improve O2 activation for photocatalytic degradation of phenol and dye.


2018 ◽  
Vol 15 (4) ◽  
pp. 226 ◽  
Author(s):  
Meiqing Chen ◽  
Pingxiao Wu ◽  
Qianqian Wei ◽  
Yajie Zhu ◽  
Shanshan Yang ◽  
...  

Environmental contextAn important goal in attempts to degrade environmental organic pollutants is the development of a photocatalyst that is responsive to visible light. We report a facile method for preparing a zinc-based photocatalyst with oxygen vacancies that efficiently degrades bisphenol A under solar light irradiation. The study will stimulate further investigations into the efficacy of other metal oxide nanostructures for the photocatalytic degradation of organic pollutants. AbstractTwo ZnCr-layered double oxides (ZnCr-LDO) were fabricated via different thermal treatment of the ZnCr-layered double hydroxide (ZnCr-LDH) precursor. ZnCr-V-700 and ZnCr-A-700 were obtained at 700 °C under vacuum and air, respectively. As X-ray diffraction revealed, both ZnCr-V-700 and ZnCr-A-700 were made up of ZnO and ZnCr2O4 spinel, and ZnCr-V-700 displayed a lower crystallinity and many uniform particles with oxygen vacancies. Scanning electron microscopy and transmission electron microscopy revealed that the particle size of ZnCr-V-700 was ~30 nm and its disordered crystallinity suggested the existence of oxygen vacancies. Notably, the ZnCr-LDO materials showed remarkably enhanced photocatalytic activity compared to the ZnCr-LDH precursor. ZnCr-V-700 was the most active material and more than 90 % of BPA was degraded after irradiation for 200 min with high mineralisation (up to 37 %). The results of Brunauer–Emmett–Teller surface area analysis, X-ray photoelectron spectroscopy, Raman and UV-vis spectroscopy and electron paramagnetic resonance spectroscopy showed that oxygen vacancies incorporated into ZnCr-V-700 played a key role in improving the photocatalytic performance by enhancing interfacial charge transfer and restricting the charge recombination. In addition, the uniform particle size, larger surface area and the coexistence of ZnO and ZnCr2O4 also played a synergistic role. In conclusion, this work not only provides a facile and low-cost method to prepare photocatalysts for treatment of wastewater containing BPA, but also supplies a new idea for improving the performance of photocatalysts.


2020 ◽  
Vol 384 ◽  
pp. 121399 ◽  
Author(s):  
Jinshan Hu ◽  
Jing Li ◽  
Jifang Cui ◽  
Weijia An ◽  
Li Liu ◽  
...  

Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1031 ◽  
Author(s):  
Tao Xian ◽  
Xiaofeng Sun ◽  
Lijing Di ◽  
Yongjie Zhou ◽  
Jun Ma ◽  
...  

In this work, Bi2O3-x with surface oxygen vacancies was prepared through the NaBH4 reduction of Bi2O3. After that, carbon quantum dots (CQDs) were deposited onto the surface of the Bi2O3-x to obtain a series of the CQDs/Bi2O3-x composites. The HRTEM and XPS characterizations of the CQDs/Bi2O3-x composites suggest that the thickness of surface oxygen vacancies could be adjusted by changing the concentration of NaBH4 solution, and the intimate contact between CQDs and the Bi2O3-x is achieved. Acid orange 7 (AO7) was adopted as the target reactant for investigating the photocatalytic degradation activities of the CQDs/Bi2O3-x composites under simulated sunlight and NIR light irradiation. It is found that the photocatalytic activities of the samples are closely related to the concentration of NaBH4 and content of CQDs. The Bi2O3-x samples exhibit enhanced simulated-sunlight-driven photocatalytic activity compared with Bi2O3. Specifically, the optimal degradation efficiency of AO7 is achieved over the 3R-Bi2O3-x (concentration of NaBH4: 3 mmol/L), which is 1.38 times higher than the degradation AO7 efficiency over Bi2O3. After the decoration of the 3R-Bi2O3-x surface with CQDs, the simulated-sunlight-driven photocatalytic activity of the CQDs/Bi2O3-x composite could be further enhanced. Among the samples, the 15C/3R-Bi2O3-x sample reveals the highest photocatalytic activity, leading to an AO7 degradation percentage of ~97% after 60 min irradiation. Different from Bi2O3 and the 3R-Bi2O3-x, the 15C/3R-Bi2O3-x sample also exhibits near-infrared (NIR)-light-driven photocatalytic degradation activity. In addition, the intrinsic photocatalytic activity of CQDs/Bi2O3-x composite was further confirmed by the degradation of phenol under simulated sunlight and NIR light irradiation. The photocurrent response and electrochemical impedance spectroscopy (EIS) measurements confirm the efficient migration and separation of photogenerated charges in the CQDs/Bi2O3-x samples. The •OH and h+ are proved to be the main reactive species in the simulated sunlight and NIR light photocatalytic processes over the CQDs/Bi2O3-x composites. According to the above experiments, the photocatalytic degradation mechanisms of the CQDs/Bi2O3-x composites under simulated sunlight and NIR light illumination were proposed.


2021 ◽  
Vol 6 (14) ◽  
pp. 3360-3369
Author(s):  
Rani P. Barkul ◽  
Radhakrishna S. Sutar ◽  
Meghshyam K. Patil ◽  
Sagar D. Delekar

Sign in / Sign up

Export Citation Format

Share Document