Gas sensor based on rGO/ZnO aerogel for efficient detection of NO2 at room temperature

2021 ◽  
Vol 32 (8) ◽  
pp. 10058-10069
Author(s):  
Huijun Gao ◽  
Yuzhen Ma ◽  
Peng Song ◽  
Jinfeng Leng ◽  
Qi Wang
Optik ◽  
2021 ◽  
Vol 234 ◽  
pp. 166615
Author(s):  
S.R. Cynthia ◽  
R. Sivakumar ◽  
C. Sanjeeviraja

2021 ◽  
Vol 416 ◽  
pp. 125830
Author(s):  
Xue Bai ◽  
He Lv ◽  
Zhuo Liu ◽  
Junkun Chen ◽  
Jue Wang ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3815
Author(s):  
Renyun Zhang ◽  
Magnus Hummelgård ◽  
Joel Ljunggren ◽  
Håkan Olin

Metal-semiconductor junctions and interfaces have been studied for many years due to their importance in applications such as semiconductor electronics and solar cells. However, semiconductor-metal networks are less studied because there is a lack of effective methods to fabricate such structures. Here, we report a novel Au–ZnO-based metal-semiconductor (M-S)n network in which ZnO nanowires were grown horizontally on gold particles and extended to reach the neighboring particles, forming an (M-S)n network. The (M-S)n network was further used as a gas sensor for sensing ethanol and acetone gases. The results show that the (M-S)n network is sensitive to ethanol (28.1 ppm) and acetone (22.3 ppm) gases and has the capacity to recognize the two gases based on differences in the saturation time. This study provides a method for producing a new type of metal-semiconductor network structure and demonstrates its application in gas sensing.


2020 ◽  
Vol 9 (5) ◽  
pp. 10624-10634
Author(s):  
Siti Nor Aliffah Mustaffa ◽  
Nurul Assikin Ariffin ◽  
Ahmed Lateef Khalaf ◽  
Mohd. Hanif Yaacob ◽  
Nizam Tamchek ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5618-5628
Author(s):  
Wenkai Jiang ◽  
Xinwei Chen ◽  
Tao Wang ◽  
Bolong Li ◽  
Min Zeng ◽  
...  

A high performance gas sensor based on a metal phthalocyanine/graphene quantum dot hybrid material was fabricated for NO2 detection at room-temperature.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 623
Author(s):  
Monika Gupta ◽  
Huzein Fahmi Hawari ◽  
Pradeep Kumar ◽  
Zainal Arif Burhanudin ◽  
Nelson Tansu

The demand for carbon dioxide (CO2) gas detection is increasing nowadays. However, its fast detection at room temperature (RT) is a major challenge. Graphene is found to be the most promising sensing material for RT detection, owing to its high surface area and electrical conductivity. In this work, we report a highly edge functionalized chemically synthesized reduced graphene oxide (rGO) thin films to achieve fast sensing response for CO2 gas at room temperature. The high amount of edge functional groups is prominent for the sorption of CO2 molecules. Initially, rGO is synthesized by reduction of GO using ascorbic acid (AA) as a reducing agent. Three different concentrations of rGO are prepared using three AA concentrations (25, 50, and 100 mg) to optimize the material properties such as functional groups and conductivity. Thin films of three different AA reduced rGO suspensions (AArGO25, AArGO50, AArGO100) are developed and later analyzed using standard FTIR, XRD, Raman, XPS, TEM, SEM, and four-point probe measurement techniques. We find that the highest edge functionality is achieved by the AArGO25 sample with a conductivity of ~1389 S/cm. The functionalized AArGO25 gas sensor shows recordable high sensing properties (response and recovery time) with good repeatability for CO2 at room temperature at 500 ppm and 50 ppm. Short response and recovery time of ~26 s and ~10 s, respectively, are achieved for 500 ppm CO2 gas with the sensitivity of ~50 Hz/µg. We believe that a highly functionalized AArGO CO2 gas sensor could be applicable for enhanced oil recovery, industrial and domestic safety applications.


Sign in / Sign up

Export Citation Format

Share Document