Distribution of mitochondrial DNA nucleoids inside the linear tubules vs. bulk parts of mitochondrial network as visualized by 4Pi microscopy

2015 ◽  
Vol 47 (3) ◽  
pp. 255-263 ◽  
Author(s):  
Andrea Dlasková ◽  
Hana Engstová ◽  
Lydie Plecitá – Hlavatá ◽  
Mark Lessard ◽  
Lukáš Alán ◽  
...  
2013 ◽  
Vol 104 (2) ◽  
pp. 657a
Author(s):  
Andrea Dlaskova ◽  
Tomas Spacek ◽  
Jan Tauber ◽  
Lukas Alan ◽  
Jitka Santorova ◽  
...  

2004 ◽  
Vol 15 (10) ◽  
pp. 4369-4381 ◽  
Author(s):  
Steven W. Gorsich ◽  
Janet M. Shaw

Opposing fission and fusion events maintain the yeast mitochondrial network. Six proteins regulate these membrane dynamics during mitotic growth—Dnm1p, Mdv1p, and Fis1p mediate fission; Fzo1p, Mgm1p, and Ugo1p mediate fusion. Previous studies established that mitochondria fragment and rejoin at distinct stages during meiosis and sporulation, suggesting that mitochondrial fission and fusion are required during this process. Here we report that strains defective for mitochondrial fission alone, or both fission and fusion, complete meiosis and sporulation. However, visualization of mitochondria in sporulating cultures reveals morphological defects associated with the loss of fusion and/or fission proteins. Specifically, mitochondria collapse to one side of the cell and fail to fragment during presporulation. In addition, mitochondria are not inherited equally by newly formed spores, and mitochondrial DNA nucleoid segregation defects give rise to spores lacking nucleoids. This nucleoid inheritance defect is correlated with an increase in petite spore colonies. Unexpectedly, mitochondria fragment in mature tetrads lacking fission proteins. The latter finding suggests either that novel fission machinery operates during sporulation or that mechanical forces generate the mitochondrial fragments observed in mature spores. These results provide evidence of fitness defects caused by fission mutations and reveal new phenotypes associated with fission and fusion mutations.


2010 ◽  
Vol 1797 (6-7) ◽  
pp. 1327-1341 ◽  
Author(s):  
Andrea Dlasková ◽  
Tomáš Špaček ◽  
Jitka Šantorová ◽  
Lydie Plecitá-Hlavatá ◽  
Zuzana Berková ◽  
...  

eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Andrew Murley ◽  
Laura L Lackner ◽  
Christof Osman ◽  
Matthew West ◽  
Gia K Voeltz ◽  
...  

Mitochondrial division is important for mitochondrial distribution and function. Recent data have demonstrated that ER–mitochondria contacts mark mitochondrial division sites, but the molecular basis and functions of these contacts are not understood. Here we show that in yeast, the ER–mitochondria tethering complex, ERMES, and the highly conserved Miro GTPase, Gem1, are spatially and functionally linked to ER-associated mitochondrial division. Gem1 acts as a negative regulator of ER–mitochondria contacts, an activity required for the spatial resolution and distribution of newly generated mitochondrial tips following division. Previous data have demonstrated that ERMES localizes with a subset of actively replicating mitochondrial nucleoids. We show that mitochondrial division is spatially linked to nucleoids and that a majority of these nucleoids segregate prior to division, resulting in their distribution into newly generated tips in the mitochondrial network. Thus, we postulate that ER-associated division serves to link the distribution of mitochondria and mitochondrial nucleoids in cells.


Life ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 164
Author(s):  
James Chapman ◽  
Yi Shiau Ng ◽  
Thomas J. Nicholls

Mitochondria are complex organelles that harbour their own genome. Mitochondrial DNA (mtDNA) exists in the form of a circular double-stranded DNA molecule that must be replicated, segregated and distributed around the mitochondrial network. Human cells typically possess between a few hundred and several thousand copies of the mitochondrial genome, located within the mitochondrial matrix in close association with the cristae ultrastructure. The organisation of mtDNA around the mitochondrial network requires mitochondria to be dynamic and undergo both fission and fusion events in coordination with the modulation of cristae architecture. The dysregulation of these processes has profound effects upon mtDNA replication, manifesting as a loss of mtDNA integrity and copy number, and upon the subsequent distribution of mtDNA around the mitochondrial network. Mutations within genes involved in mitochondrial dynamics or cristae modulation cause a wide range of neurological disorders frequently associated with defects in mtDNA maintenance. This review aims to provide an understanding of the biological mechanisms that link mitochondrial dynamics and mtDNA integrity, as well as examine the interplay that occurs between mtDNA, mitochondrial dynamics and cristae structure.


Author(s):  
Douglas C. Barker

A number of satisfactory methods are available for the electron microscopy of nicleic acids. These methods concentrated on fragments of nuclear, viral and mitochondrial DNA less than 50 megadaltons, on denaturation and heteroduplex mapping (Davies et al 1971) or on the interaction between proteins and DNA (Brack and Delain 1975). Less attention has been paid to the experimental criteria necessary for spreading and visualisation by dark field electron microscopy of large intact issociations of DNA. This communication will report on those criteria in relation to the ultrastructure of the (approx. 1 x 10-14g) DNA component of the kinetoplast from Trypanosomes. An extraction method has been developed to eliminate native endonucleases and nuclear contamination and to isolate the kinetoplast DNA (KDNA) as a compact network of high molecular weight. In collaboration with Dr. Ch. Brack (Basel [nstitute of Immunology), we studied the conditions necessary to prepare this KDNA Tor dark field electron microscopy using the microdrop spreading technique.


Author(s):  
K. S. McCarty ◽  
R. F. Weave ◽  
L. Kemper ◽  
F. S. Vogel

During the prodromal stages of sporulation in the Basidiomycete, Agaricus bisporus, mitochondria accumulate in the basidial cells, zygotes, in the gill tissues prior to entry of these mitochondria, together with two haploid nuclei and cytoplasmic ribosomes, into the exospores. The mitochondria contain prominent loci of DNA [Fig. 1]. A modified Kleinschmidt spread technique1 has been used to evaluate the DNA strands from purified whole mitochondria released by osmotic shock, mitochondrial DNA purified on CsCl gradients [density = 1.698 gms/cc], and DNA purified on ethidium bromide CsCl gradients. The DNA appeared as linear strands up to 25 u in length and circular forms 2.2-5.2 u in circumference. In specimens prepared by osmotic shock, many strands of DNA are apparently attached to membrane fragments [Fig. 2]. When mitochondria were ruptured in hypotonic sucrose and then fixed in glutaraldehyde, the ribosomes were released for electron microscopic examination.


Sign in / Sign up

Export Citation Format

Share Document