scholarly journals Proteomic Characterization and Target Identification Against Streptococcus mutans Under Bacitracin Stress Conditions Using LC–MS and Subtractive Proteomics

Author(s):  
Sahar Zaidi ◽  
Tulika Bhardwaj ◽  
Pallavi Somvanshi ◽  
Asad U. Khan
2013 ◽  
Vol 80 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Dan Li ◽  
Yukie Shibata ◽  
Toru Takeshita ◽  
Yoshihisa Yamashita

ABSTRACTAStreptococcus mutansmutant defective in aciduricity was constructed by random-insertion mutagenesis. Sequence analysis of the mutant revealed a mutation ingidA, which is known to be involved in tRNA modification inStreptococcus pyogenes. Complementation ofgidAbyS. pyogenesgidArecovered the acid tolerance ofS. mutans. Although thegidA-inactivatedS. pyogenesmutant exhibited significantly reduced expression of multiple extracellular virulence proteins, theS. mutansmutant did not. On the other hand, thegidAmutant ofS. mutansshowed reduced ability to withstand exposure to other stress conditions (high osmotic pressure, high temperature, and bacitracin stress) besides an acidic environment. In addition, loss of GidA decreased the capacity for glucose-dependent biofilm formation by over 50%. This study revealed thatgidAplays critical roles in the survival ofS. mutansunder stress conditions, including lower pH.


2007 ◽  
Vol 189 (18) ◽  
pp. 6521-6531 ◽  
Author(s):  
Indranil Biswas ◽  
Laura Drake ◽  
Saswati Biswas

ABSTRACT Streptococcus mutans, the principal causative agent of dental caries, produces four glucan-binding proteins (Gbp) that play major roles in bacterial adherence and pathogenesis. One of these proteins, GbpC, is an important cell surface protein involved in biofilm formation. GbpC is also important for cariogenesis, bacteremia, and infective endocarditis. In this study, we examined the regulation of gbpC expression in S. mutans strain UA159. We found that gbpC expression attains the maximum level at mid-exponential growth phase, and the half-life of the transcript is less than 2 min. Expression from PgbpC was measured using a PgbpC-gusA transcriptional fusion reporter and was analyzed under various stress conditions, including thermal, osmotic, and acid stresses. Expression of gbpC is induced under conditions of thermal stress but is repressed during growth at low pH, whereas osmotic stress had no effect on expression from PgbpC. The results from the expression analyses were further confirmed using semiquantitative reverse transcription-PCR analysis. Our results also reveal that CovR, a global response regulator in many Streptococcus spp., represses gbpC expression at the transcriptional level. We demonstrated that purified CovR protein binds directly to the promoter region of PgbpC to repress gbpC expression. Using a DNase I protection assay, we showed that CovR binds to DNA sequences surrounding PgbpC from bases −68 to 28 (where base 1 is the start of transcription). In summary, our results indicate that various stress conditions modulate the expression of gbpC and that CovR negatively regulates the expression of the gbpC gene by directly binding to the promoter region.


2020 ◽  
Vol 77 (10) ◽  
pp. 2953-2962
Author(s):  
Mohamed Hussain Syed Abuthakir ◽  
Thomas Jebastin ◽  
Velusamy Sharmila ◽  
Muthusamy Jeyam

Author(s):  
Shakti Chandra Vadhana Marimuthu ◽  
Haribalaganesh Ravinarayanan ◽  
Joseph Christina Rosy ◽  
Krishnan Sundar

Background: Dental caries is the most common and one of the prevalent diseases in the world. Streptococcus mutans is one of the major oral pathogen that causes dental caries by forming biofilm on dental tissues, degrading dental enamel and consequent cavitation in the tissue. In vitro selection of drug targets is a laborious and expensive process and therefore computational methods are preferable for target identification at initial stage. Objective: The present research aims to find new drug targets in S. mutans by using subtractive proteomics analysis which implements various bioinformatics tools and databases. Methods: The proteome of S. mutans UA159 was mined for novel drug targets using computational tools and databases such as: CD-HIT, BLASTP, DEG, KAAS and CELL2GO. Results: Out of 1953 proteins of S. mutans UA159, proteins that are non-redundant, non-homologous to human and nonessential to the pathogen were eliminated. Around 178 proteins already available in drug target repositories were also eliminated. Possible functions and subcellular localization of 32 uncharacterized proteins were predicted. Substantially 13 proteins were identified as novel drug targets in S. mutans UA159 that can be targeted by various drugs against dental caries. Conclusion: This study will effectuate the development of novel therapeutic agents against dental carries and other Streptococcal infections.


Author(s):  
M. J. Kramer ◽  
Alan L. Coykendall

During the almost 50 years since Streptococcus mutans was first suggested as a factor in the etiology of dental caries, a multitude of studies have confirmed the cariogenic potential of this organism. Streptococci have been isolated from human and animal caries on numerous occasions and, with few exceptions, they are not typable by the Lancefield technique but are relatively homogeneous in their biochemical reactions. An analysis of the guanine-cytosine (G-C) composition of the DNA from strains K-1-R, NCTC 10449, and FA-1 by one of us (ALC) revealed significant differences and DNA-DNA reassociation experiments indicated that genetic heterogeneity existed among the three strains. The present electron microscopic study had as its objective the elucidation of any distinguishing morphological characteristics which might further characterize the respective strains.


Crisis ◽  
2012 ◽  
Vol 33 (2) ◽  
pp. 106-112 ◽  
Author(s):  
Christopher M. Bloom ◽  
Shareen Holly ◽  
Adam M. P. Miller

Background: Historically, the field of self-injury has distinguished between the behaviors exhibited among individuals with a developmental disability (self-injurious behaviors; SIB) and those present within a normative population (nonsuicidal self-injury; NSSI),which typically result as a response to perceived stress. More recently, however, conclusions about NSSI have been drawn from lines of animal research aimed at examining the neurobiological mechanisms of SIB. Despite some functional similarity between SIB and NSSI, no empirical investigation has provided precedent for the application of SIB-targeted animal research as justification for pharmacological interventions in populations demonstrating NSSI. Aims: The present study examined this question directly, by simulating an animal model of SIB in rodents injected with pemoline and systematically manipulating stress conditions in order to monitor rates of self-injury. Methods: Sham controls and experimental animals injected with pemoline (200 mg/kg) were assigned to either a low stress (discriminated positive reinforcement) or high stress (discriminated avoidance) group and compared on the dependent measures of self-inflicted injury prevalence and severity. Results: The manipulation of stress conditions did not impact the rate of self-injury demonstrated by the rats. The results do not support a model of stress-induced SIB in rodents. Conclusions: Current findings provide evidence for caution in the development of pharmacotherapies of NSSI in human populations based on CNS stimulant models. Theoretical implications are discussed with respect to antecedent factors such as preinjury arousal level and environmental stress.


Sign in / Sign up

Export Citation Format

Share Document