Effect of the initial phase state of DT-matter on the compression of inertial fusion targets

2011 ◽  
Vol 32 (6) ◽  
pp. 596-603 ◽  
Author(s):  
Sergey Yu. Gus’kov ◽  
Nikolay V. Zmitrenko ◽  
Vladislav B. Rozanov
Cryobiology ◽  
1988 ◽  
Vol 25 (3) ◽  
pp. 256-263 ◽  
Author(s):  
N. Tsvetkova ◽  
B. Tenchov ◽  
L. Tsonev ◽  
Ts. Tsvetkov

2012 ◽  
Vol 27 ◽  
pp. 349-353 ◽  
Author(s):  
E. Kočišová ◽  
A. Vodáková ◽  
M. Procházka

Drop-coating deposition Raman (DCDR) spectroscopy was employed to study liposome suspensions. The method is based on a specific drying process on the hydrophobic surface that efficiently accumulates the macromolecular sample in a ring of the edge of the dried drop. We studied liposome suspensions purchased from two sources (Avanti Polar Lipids, Inc. and Sigma-Aldrich, Co.) and prepared under different conditions. Structure of the dried drop substantially depends on the lipid concentration, lipid composition of the sample, and used solvent. Optimal lipid concentration is about 0.3 mg/ml in all cases, asolectin and DSPC suspensions form compact dried drops when dissolved in water and phosphate buffer, respectively. Drying process of the sample drop does not influence the initial phase state (gel or liquid-crystalline) of the studied liposomes excepting DSPC from Sigma-Aldrich, Co.


2021 ◽  
Vol 9 (5) ◽  
pp. 23-32
Author(s):  
Anatolii Alpatov ◽  
Victor Kravets ◽  
Volodymyr Kravets ◽  
Erik Lapkhanov

The binary dynamic circuit, which can be a design scheme for a number of technical systems is considered in the paper. The dynamic circuit is characterized by the kinetic energy of the translational motion of two masses, the potential energy of these masses’ elastic interaction and the dissipative function of energy dissipation during their motion. The free motion of a binary dynamic circuit is found according to a given initial phase state. A mathematical model of the binary dynamic circuit motion in the canonical form and the corresponding characteristic equation of the fourth degree are compiled. Analytical modeling of the binary dynamic circuit is carried out on the basis of the proposed particular solution of the complete algebraic equation of the fourth degree. A homogeneous dynamic circuit is considered and the reduced coefficients of elasticity and damping are introduced. The dependence of the reduced coefficients of elasticity and damping is established, which provides the required class of solutions to the characteristic equation. An ordered form of the analytical representation of a dynamic process is proposed in symmetric determinants, which is distinguished by the conservatism of notation with respect to the roots of the characteristic equation and phase coordinates.


1966 ◽  
Author(s):  
Robert P. Barrell ◽  
Alan S. DeWolfe ◽  
Fred E. Spaner

2006 ◽  
Vol 133 ◽  
pp. 35-35
Author(s):  
D. T. Goodin ◽  
R. W. Petzoldt ◽  
B. A. Vermillion ◽  
D. T. Frey ◽  
N. B. Alexander ◽  
...  

1997 ◽  
Vol 36 (04/05) ◽  
pp. 290-293
Author(s):  
L. Glass ◽  
T. Nomura

Abstract:Excitable media, such as nerve, heart and the Belousov-Zhabo- tinsky reaction, exhibit a large excursion from equilibrium in response to a small but finite perturbation. Assuming a one-dimensional ring geometry of sufficient length, excitable media support a periodic wave of circulation. As in the periodic stimulation of oscillations in ordinary differential equations, the effects of periodic stimuli of the periodically circulating wave can be described by a one-dimensional Poincaré map. Depending on the period and intensity of the stimulus as well as its initial phase, either entrainment or termination of the original circulating wave is observed. These phenomena are directly related to clinical observations concerning periodic stimulation of a class of cardiac arrhythmias caused by reentrant wave propagation in the human heart.


TAPPI Journal ◽  
2013 ◽  
Vol 12 (1) ◽  
pp. 37-43 ◽  
Author(s):  
HANNU PAKKANEN ◽  
TEEMU PALOHEIMO ◽  
RAIMO ALÉN

The influence of various cooking parameters, such as effective alkali, cooking temperature, and cooking time on the formation of high molecular mass lignin-derived and low molecular mass carbohydrates-derived (aliphatic carboxylic acids) degradation products, mainly during the initial phase of softwood kraft pulping was studied. In addition, the mass transfer of all of these degradation products was clarified based on their concentrations in the cooking liquor inside and outside of the chips. The results indicated that the degradation of the major hemicellulose component, galactoglucomannan, typically was dependent on temperature, and the maximum degradation amount was about 60%. In addition, about 60 min at 284°F (140°C) was needed for leveling off the concentrations of the characteristic reaction products (3,4-dideoxy-pentonic and glucoisosaccharinic acids) between these cooking liquors. Compared with low molecular mass aliphatic acids, the mass transfer of soluble lignin fragments with much higher molecular masses was clearly slower.


2008 ◽  
Vol 128 (7) ◽  
pp. 1185-1190 ◽  
Author(s):  
Kuniaki Fujimoto ◽  
Hirofumi Sasaki ◽  
Mitsutoshi Yahara
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document