nyquist frequency
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 20)

H-INDEX

13
(FIVE YEARS 1)

Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1544
Author(s):  
Wandi Liang ◽  
Zixiong Wang ◽  
Guangyu Lu ◽  
Yang Jiang

The theory of compressed sensing (CS) has shown tremendous potential in many fields, especially in the signal processing area, due to its utility in recovering unknown signals with far lower sampling rates than the Nyquist frequency. In this paper, we present a novel, optimized recovery algorithm named supp-BPDN. The proposed algorithm executes a step of selecting and recording the support set of original signals before using the traditional recovery algorithm mostly used in signal processing called basis pursuit denoising (BPDN). We proved mathematically that even in a noise-affected CS system, the probability of selecting the support set of signals still approaches 1, which means supp-BPDN can maintain good performance in systems in which noise exists. Recovery results are demonstrated to verify the effectiveness and superiority of supp-BPDN. Besides, we set up a photonic-enabled CS system realizing the reconstruction of a two-tone signal with a peak frequency of 350 MHz through a 200 MHz analog-to-digital converter (ADC) and a signal with a peak frequency of 1 GHz by a 500 MHz ADC. Similarly, supp-BPDN showed better reconstruction results than BPDN.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1854
Author(s):  
Hyungyu Ju ◽  
Sewon Lee ◽  
Minjae Lee

This paper presents a switched capacitive reference driver (SCRD) with a low-energy switching scheme. In order to reduce the performance degradation resulting from a signal-dependent voltage drop in a capacitive reference driver (CRD) without increasing the capacitance (CREF) of a CRD, the proposed SCRD utilizes the CRD for LSB conversion cycles. In MSB conversion cycles, a supply voltage is used as a reference voltage to save on area and power consumption. As such, the proposed SCRD significantly relaxes the required CREF, and does not necessitate bit weight calibration or compensation requiring an auxiliary capacitor-based digital-to-analog converter (CDAC). To evaluate the proposed SCRD, a prototype 12-bit 40-MS/s SAR ADC is fabricated in a 65 nm CMOS process. With near Nyquist frequency, the measured spurious-free dynamic range (SFDR) of the SAR ADC with the SCRD is 80.6 dB, which is about a 16 dB improvement from the SFDR of a SAR ADC with a CRD only.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1733
Author(s):  
Hanbo Jia ◽  
Xuan Guo ◽  
Xuqiang Zheng ◽  
Xiaodi Xu ◽  
Danyu Wu ◽  
...  

This paper presents a 4-bit 36 GS/s analog-to-digital converter (ADC) employing eight time-interleaved (TI) flash sub-ADCs in 40 nm complementary metal-oxide-semiconductor (CMOS) process. A wideband front-end matching circuit based on a peaking inductor is designed to increase the analog input bandwidth to 18 GHz. A novel offset calibration that can achieve quick detection and accurate correction without affecting the speed of the comparator is proposed, guaranteeing the high-speed operation of the ADC. A clock distribution circuit based on CMOS and current mode logic (CML) is implemented in the proposed ADC, which not only maintains the speed and quality of the high-speed clock, but also reduces the overall power consumption. A timing mismatch calibration is integrated into the chip to achieve fast timing mismatch detection of the input signal which is bandlimited to the Nyquist frequency for the complete ADC system. The experimental results show that the differential nonlinearity (DNL) and integral nonlinearity (INL) are −0.28/+0.22 least significant bit (LSB) and −0.19/+0.16 LSB, respectively. The signal-to-noise-and-distortion ratio (SNDR) is above 22.5 dB and the spurious free dynamic range (SFDR) is better than 35 dB at 1.2 GHz. An SFDR above 24.5 dB and an SNDR above 18.6 dB across the entire Nyquist frequency can be achieved. With a die size of 2.96 mm * 1.8 mm, the ADC consumes 780 mW from the 0.9/1.2/1.8 V power supply.


Econometrics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 35
Author(s):  
D. Stephen G. Pollock

The econometric data to which autoregressive moving-average models are commonly applied are liable to contain elements from a limited range of frequencies. If the data do not cover the full Nyquist frequency range of [0,π] radians, then severe biases can occur in estimating their parameters. The recourse should be to reconstitute the underlying continuous data trajectory and to resample it at an appropriate lesser rate. The trajectory can be derived by associating sinc fuction kernels to the data points. This suggests a model for the underlying processes. The paper describes frequency-limited linear stochastic differential equations that conform to such a model, and it compares them with equations of a model that is assumed to be driven by a white-noise process of unbounded frequencies. The means of estimating models of both varieties are described.


Author(s):  
Dali Li

Abstract This paper provides the seismic time history data precision and time interval requirement for seismic dynamic analysis. U.S.NRC SRP 3.7.1 “Seismic Design Parameters” Acceptance Criteria for Design Time Histories specifies the power spectral density Nyquist Frequency, time interval, and total duration; however, it does not have the requirement for Response Spectra. The response spectrum bandwidth is inverse-proportional to time interval of the time history. For the time interval of 0.005 seconds, the bandwidth for the response spectrum is between 0.194 Hz and 80.5 Hz; the PSD Nyquist frequency is 100 Hz. For 20.48 seconds time history, 4096 data points are required. The response spectrum between 1.28 Hz and 13.6 Hz has the peak flat magnitude value; the magnitude drops to 0.707 of the peak value from 1.28 Hz to 0.194 Hz and from 13.6 Hz to 80.5 Hz. This paper also provides the time interval requirement for various response spectrum peak flat magnitude value; i.e., the response spectrum highest flat magnitude of 27.2 Hz requires a time interval of 0.0025 seconds time history. For 20.48 seconds time history, 8192 data points are required. For CSDRS, the time interval of 0.005 seconds is adequate for the frequency range of interest between 0.36 Hz and 57.2 Hz. For HRHF, the time interval of 0.0025 seconds is required to analyze the frequency range of interest between 0.36 Hz and 114.4 Hz.


2020 ◽  
Vol 56 (15) ◽  
pp. 753-756
Author(s):  
Yongsheng Yin ◽  
Zhujuan Wan ◽  
Hongmei Chen ◽  
Lu Liu ◽  
Honghui Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document