Microstructure Evolution of Ni-Co Alloys During Crystallization and Amorphization Process

Author(s):  
Yong-chao Liang ◽  
Rui-bo Ma ◽  
Li-li Zhou ◽  
Mu He ◽  
Ze-an Tian ◽  
...  
Author(s):  
V. Bounhoure ◽  
S. Lay ◽  
F. Charlot ◽  
A. Antoni-Zdziobek ◽  
E. Pauty ◽  
...  

Metals ◽  
2016 ◽  
Vol 6 (3) ◽  
pp. 46 ◽  
Author(s):  
Angeliki Lekatou ◽  
Athanasios Sfikas ◽  
Christina Petsa ◽  
Alexandros Karantzalis

Author(s):  
Yalcin Belli

Fe-Cr-Co alloys have great technological potential to replace Alnico alloys as hard magnets. The relationship between the microstructures and the magnetic properties has been recently established for some of these alloys. The magnetic hardening has been attributed to the decomposition of the high temperature stable phase (α) into an elongated Fe-rich ferromagnetic phase (α1) and a weakly magnetic or non-magnetic Cr-rich phase (α2). The relationships between magnetic domains and domain walls and these different phases are yet to be understood. The TEM has been used to ascertain the mechanism of magnetic hardening for the first time in these alloys. The present paper describes the magnetic domain structure and the magnetization reversal processes in some of these multiphase materials. Microstructures to change properties resulting from, (i) isothermal aging, (ii) thermomagnetic treatment (TMT) and (iii) TMT + stepaging have been chosen for this investigation. The Jem-7A and Philips EM-301 transmission electron microscopes operating at 100 kV have been used for the Lorentz microscopy study of the magnetic domains and their interactions with the finely dispersed precipitate phases.


1986 ◽  
Vol 47 (C1) ◽  
pp. C1-685-C1-689 ◽  
Author(s):  
S. LAY ◽  
F. OSTERSTOCK ◽  
J. VICENS
Keyword(s):  

2014 ◽  
Vol 29 (9) ◽  
pp. 941
Author(s):  
JIANG Jin-Long ◽  
WANG Qiong ◽  
HUANG Hao ◽  
ZHANG Xia ◽  
WANG Yu-Bao ◽  
...  

Author(s):  
Wentao Qin ◽  
Dorai Iyer ◽  
Jim Morgan ◽  
Carroll Casteel ◽  
Robert Watkins ◽  
...  

Abstract Ni(5 at.%Pt ) films were silicided at a temperature below 400 °C and at 550 °C. The two silicidation temperatures had produced different responses to the subsequent metal etch. Catastrophic removal of the silicide was seen with the low silicidation temperature, while the desired etch selectivity was achieved with the high silicidation temperature. The surface microstructures developed were characterized with TEM and Auger depth profiling. The data correlate with both silicidation temperatures and ultimately the difference in the response to the metal etch. With the high silicidation temperature, there existed a thin Si-oxide film that was close to the surface and embedded with particles which contain metals. This thin film is expected to contribute significantly to the desired etch selectivity. The formation of this layer is interpreted thermodynamically.


Sign in / Sign up

Export Citation Format

Share Document