scholarly journals Scheduling with gaps: new models and algorithms

Author(s):  
Marek Chrobak ◽  
Mordecai Golin ◽  
Tak-Wah Lam ◽  
Dorian Nogneng

AbstractWe consider scheduling problems for unit jobs with release times, where the number or size of the gaps in the schedule is taken into consideration, either in the objective function or as a constraint. Except for several papers on minimum-energy scheduling, there is no work in the scheduling literature that uses performance metrics depending on the gap structure of a schedule. One of our objectives is to initiate the study of such scheduling problems. We focus on the model with unit-length jobs. First we examine scheduling problems with deadlines, where we consider two variants of minimum-gap scheduling: maximizing throughput with a budget for the number of gaps and minimizing the number of gaps with a throughput requirement. We then turn to other objective functions. For example, in some scenarios gaps in a schedule may be actually desirable, leading to the problem of maximizing the number of gaps. A related problem involves minimizing the maximum gap size. The second part of the paper examines the model without deadlines, where we focus on the tradeoff between the number of gaps and the total or maximum flow time. For all these problems we provide polynomial time algorithms, with running times ranging from $$O(n\log n)$$ O ( n log n ) for some problems to $$O(n^7)$$ O ( n 7 ) for other. The solutions involve a spectrum of algorithmic techniques, including different dynamic programming formulations, speed-up techniques based on searching Monge arrays, searching $$X+Y$$ X + Y matrices, or implicit binary search. Throughout the paper, we also draw a connection between gap scheduling problems and their continuous analogues, namely hitting set problems for intervals of real numbers. As it turns out, for some problems the continuous variants provide insights leading to efficient algorithms for the corresponding discrete versions, while for other problems completely new techniques are needed to solve the discrete version.

2021 ◽  
Author(s):  
Waqas Shah

As the world’s economic activities are expanding, the energy comes to the fore to the question of the sustainable growth in all technological areas, including wireless mobile networking. Energyaware routing schemes for wireless networks have spurred a great deal of recent research towards achieving this goal. Recently, an energy-aware routing protocol for MANETs (so-called energy-efficient ad hoc on-demand routing protocol (EEAODR) for MANETs was proposed, in which the energy load among nodes is balanced so that a minimum energy level is maintained and the resulting network lifetime is increased. In this paper, an Ant Colony Optimization (ACO) inspired approach to EEAODR (ACO-EEAODR) is proposed. To the best of our knowledge, no attempts have been made so far in this direction. Simulation results are provided, demonstrating that the ACO-EEAODR outperforms the EEAODR scheme in terms of energy consumed and network lifetime, chosen as performance metrics.


2021 ◽  
Author(s):  
Jalal Mohammad Chikhe

Due to the reduction of transistor size, modern circuits are becoming more sensitive to soft errors. The development of new techniques and algorithms targeting soft error detection are important as they allow designers to evaluate the weaknesses of the circuits at an early stage of the design. The project presents an optimized implementation of soft error detection simulator targeting combinational circuits. The developed simulator uses advanced switch level models allowing the injection of soft errors caused by single event-transient pulses with magnitudes lesser than the logic threshold. The ISCAS'85 benchmark circuits are used for the simulations. The transients can be injected at drain, gate, or inputs of logic gate. This gives clear indication of the importance of transient injection location on the fault coverage. Furthermore, an algorithm is designed and implemented in this work to increase the performance of the simulator. This optimized version of the simulator achieved an average speed-up of 310 compared to the non-algorithm based version of the simulator.


Algorithms ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 246
Author(s):  
Yuri N. Sotskov ◽  
Еvangelina I. Mihova

This article extends the scheduling problem with dedicated processors, unit-time tasks, and minimizing maximal lateness for integer due dates to the scheduling problem, where along with precedence constraints given on the set of the multiprocessor tasks, a subset of tasks must be processed simultaneously. Contrary to a classical shop-scheduling problem, several processors must fulfill a multiprocessor task. Furthermore, two types of the precedence constraints may be given on the task set . We prove that the extended scheduling problem with integer release times of the jobs to minimize schedule length may be solved as an optimal mixed graph coloring problem that consists of the assignment of a minimal number of colors (positive integers) to the vertices of the mixed graph such that, if two vertices and are joined by the edge , their colors have to be different. Further, if two vertices and are joined by the arc , the color of vertex has to be no greater than the color of vertex . We prove two theorems, which imply that most analytical results proved so far for optimal colorings of the mixed graphs , have analogous results, which are valid for the extended scheduling problems to minimize the schedule length or maximal lateness, and vice versa.


2014 ◽  
Vol 31 (04) ◽  
pp. 1450030 ◽  
Author(s):  
CHENGWEN JIAO ◽  
WENHUA LI ◽  
JINJIANG YUAN

We consider online scheduling of unit length jobs on m identical parallel-batch machines. Jobs arrive over time. The objective is to minimize maximum flow-time, with the flow-time of a job being the difference of its completion time and its release time. A parallel-batch machine can handle up to b jobs simultaneously as a batch. Here, the batch capacity is bounded, that is b < ∞. In this paper, we provide a best possible online algorithm for the problem with a competitive ratio of [Formula: see text].


In MANET usually nodes interact with each other either directly or by relaying nodes depending on whether nodes present are in vicinity of each other or not respectively. There are different routing protocols which work on the principle either of demand or not. AODV is a reactive routing protocol which performs on the strategy of shortest hop in its vicinity. Sometimes there is a route failure in network then some message is sent to the node if reply is not received with in time frame then for sure path is broken. So it is wastage of time and energy of all the participating nodes. Main reason behind the node failure is the sustaining energy of the participating nodes in the communication. Since nodes which have very less energy gets consumed when these try to send either data or reply to and from the nodes. Sometimes a node has minimum energy to send data. As soon as it sends data it is switched off and does not send delivery successful reply to the originating network. So in this case network thinks path is broken so message is again sent to another path. So here it again there is loss of energy of other communicating node and also wastage of time to send data to nodes. In this research work, an energy and time efficient approach will be proposed which will save time as well as energy of remaining nodes which further utilizes all the known linked paths simultaneously for transmitting data with the help of AODV routing protocol. Different simulation parameters are used to check the accuracy of approach. Simulation is performed on NS-3. There will be 50 to 100 nodes in the topology. Performance metrics like throughput, energy deviation, packet lost, packet delivery ratio and other will be used for performance checking with respect to standard AODV routing protocol. This research work provides the improvements to the existing algorithms of communication among network nodes in mobile ad-hoc networks (MANET) to obtain better results.


2013 ◽  
Vol 4 (2) ◽  
pp. 267-272
Author(s):  
Dr. Deepali Virmani

Optimizing and enhancing network lifetime with minimum energy consumption is the major challenge in field of wireless sensor networks. Existing techniques for optimizing network lifetime are based on exploiting node redundancy, adaptive radio transmission power and topology control. Topology control protocols have a significant impact on network lifetime, available energy and connectivity. In this paper we categorize sensor nodes as strong and weak nodes based on their residual energy as well as operational lifetime and propose a Maximizing Network lifetime Operator (MLTO) that defines cluster based topology control mechanism to enhance network lifetime while guarantying the minimum energy consumption and minimum delay. Extensive simulations in Java-Simulator (J-Sim) show that our proposed operator outperforms the existing protocols in terms of various performance metrics life network lifetime, average delay and minimizes energy utilization.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3293
Author(s):  
Huilong Fan ◽  
Zhan Yang ◽  
Shimin Wu ◽  
Xi Zhang ◽  
Jun Long ◽  
...  

To overcome the low timeliness of resource scheduling problems in spatial information networks, we propose a method based on a dynamic reconstruction of resource request queues and the autonomous coordinated scheduling of resources. First, we construct a small satellite network and combine the graph maximum flow theory to solve the link resource planning problem during inter-satellite data transmission. In addition, we design a multi-satellite resource scheduling algorithm with minimal time consumption based on graph theory. The algorithm is based on graph theory to reallocate the resource request queue to satellites with idle processing resources. Finally, we simulate the efficient resource scheduling capability in the spatial information network and empirically compare our approaches against two representative swarm intelligence baseline approaches and show that our approach has significant advantages in terms of performance and time consumption during resource scheduling.


1997 ◽  
Vol 12 (3) ◽  
pp. 1380-1387 ◽  
Author(s):  
A.C.Z. de Souza ◽  
C.A. Canizares ◽  
V.H. Quintana

Sign in / Sign up

Export Citation Format

Share Document