Ammonium molybdophosphate functionalized copolymer micelles for efficient Cs+ adsorption

2021 ◽  
Vol 28 (12) ◽  
Author(s):  
Guihua Ma ◽  
Youxiong Zheng ◽  
Yuting Zhou ◽  
Li Gao ◽  
Bingxin Liu ◽  
...  
2010 ◽  
Vol 6 (3) ◽  
pp. 277-284 ◽  
Author(s):  
Konstantinos Gardikis ◽  
Konstantinos Dimas ◽  
Aristidis Georgopoulos ◽  
Eleni Kaditi ◽  
Stergios Pispas ◽  
...  

1997 ◽  
Vol 62 (11) ◽  
pp. 1730-1736 ◽  
Author(s):  
Petr Munk ◽  
Zdeněk Tuzar ◽  
Karel Procházka

When two electrolyte solutions are separated and only some of the ions can cross the boundary, the concentrations of these ions are different on both sides of the boundary. This is the well-known Donnan effect. When weak electrolytes are involved, the imbalance includes also hydrogen ions: there is a difference of pH across the boundary and the dissociation of nondiffusible weak electrolytes is suppressed. The effect is very pronounced when the concentration of the weak electrolyte is high and ionic strength is low. The significance of this phenomenon is discussed for polyelectrolyte solutions, and particularly for block copolymer micelles with weak polyelectrolyte shells. The effect is quite dramatic in the latter case.


1993 ◽  
Vol 58 (10) ◽  
pp. 2290-2304 ◽  
Author(s):  
Zuzana Limpouchová ◽  
Karel Procházka

Monte Carlo simulations of chain conformations in a restricted spherical volume at relatively high densities of segments were performed for various numbers of chains, N, and chain lengths (number of segments), L, on a tetrahedral lattice. All chains are randomly end-tethered to the surface of the sphere. A relatively uniform surface density of the tethered ends is guaranteed in our simulations. A simultaneous self-avoiding walk of all chains creates starting conformations for a subsequent equilibration. A modified algorithm similar to that of Siepmann and Frenkel is used for the equilibration of the chain conformations. In this paper, only a geometrical excluded volume effect of segments is considered. Various structural and conformational characteristics, e.g. segment densities gS(r), free end densities gF(r) as functions of the position in the sphere (a distance from the center), distributions of the tethered-to-free end distances, ρTF(rTF), etc. are calculated and their physical meaning is discussed. The model is suitable for studies of chain conformations is swollen cores of multimolecular block copolymer micelles and for interpretation of non-radiative excitation energy migration in polymeric micellar systems.


1993 ◽  
Vol 58 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Minmin Tian ◽  
C. Ramireddy ◽  
Stephen E. Webber ◽  
Petr Munk

No anomalies were observed during the measurement of sedimentation coefficients of block copolymer micelles formed by copolymers of styrene and methacrylic acid in a mixed solvent; 80 vol.% of dioxane and 20 vol.% of water. The shapes of the sedimenting boundaries suggest that the size heterogeneity of the micelles is small. Linear relations between 1/s and c were obtained. The value of the hydrodynamic coefficient κ was between 2 and 4 in a good agreement with the value 2.75 or 2.86 that was obtained by combining Burgers' or Fixman's values of the coefficient of the concentration dependence kvs for hard spheres with Einstein's value of [η] for spheres.


2006 ◽  
Vol 71 (5) ◽  
pp. 756-768 ◽  
Author(s):  
Karel Jelínek ◽  
Filip Uhlík ◽  
Zuzana Limpouchová ◽  
Pavel Matějíček ◽  
Karel Procházka

The multimolecular micelles formed by polystyrene-block-poly(methacrylic acid) (PS-PMA) copolymer and by hydrophobically modified PS-PMA copolymer with naphthalene and anthracene (PS-N-PMA-A) were studied by self-consistent field (SCF) calculations in aqueous media. The labeling with covalently bonded naphthalene between PS and PMA blocks and with anthracene at the free end of PMA blocks, which is suitable for experimental nonradiative excitation energy transfer (NRET) studies of PS-N-PMA-A micelles, modifies the structure of micellar shell. The study was aimed at understanding structure and behavior of micelles at different pH and ionic strength. The results show that the presence of hydrophobic tags has only a small influence on the overall structure of micelles but it strongly affects the distribution of PMA free ends. The hydrophobic labels (anthracenes) try to return into the shell and their certain fraction is localized close to the core/shell interface, which causes a fairly high NRET efficiency. The calculated and experimentally measured NRET efficiency were compared; their trends are reasonable at the semiquantitative level.


2001 ◽  
Vol 38 (10) ◽  
pp. 872-878 ◽  
Author(s):  
Hitoshi MIMURA ◽  
Mikio SAITO ◽  
Kenichi AKIBA ◽  
Yoshio ONODERA

2021 ◽  
Author(s):  
Seyoung Kim ◽  
Sangho Lee ◽  
Soo-Hyung Choi ◽  
Kookheon Char

RSC Advances ◽  
2015 ◽  
Vol 5 (26) ◽  
pp. 20025-20034 ◽  
Author(s):  
Yuling Li ◽  
Sai Wang ◽  
Dandan Zhu ◽  
Yuling Shen ◽  
Baixiang Du ◽  
...  

Reversibly shell cross-linked micelles based on a lipoic acid (LA) decorated triblock copolymer poly(ethylene glycol)-b-poly(γ-benzyl-l-glutamate)-b-poly(l-phenylalanine) have been developed for efficient intracellular delivery of DOX.


Sign in / Sign up

Export Citation Format

Share Document