3D porous polyurethane (PU)/ triethanolamine modified hydroxyapatite (TEA-HA) nano composite for enhanced bioactivity for biomedical applications

2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Lokesh Kumar ◽  
Dheeraj Ahuja
2021 ◽  
Vol 06 ◽  
Author(s):  
Raja Murugesan ◽  
Sureshkumar Raman ◽  
Arun Radhakrishnan

Background: Recently, Nanomaterials based nano-composite materials play the role of various field. Especially, Carbon nanotube based materials are involved in the bio-medical applications.Since, their exclusive and exciting property, researchers worldwide have extensively involved in trans-modulating the carbon nanotubes into a viable medico-friendly system. Objective: These active researches paved the path towards targeted drug delivery, diagnostic techniques, and bio-analytical applications. Despite these exciting properties, which accomplish the probable for biomedical applications, they hold Biosafety issues. Methods: This broad-spectrum review has discussed different aspects of carbon nanotubes and carbon nanotube-based systems related to biomedical applications. Results: Adding to this, a short chronological description of these tiny yet powerful particles given, followed by a discussion regarding their types, properties, methods of synthesis, scale-up, purification techniques and characterization aspects of carbon nanotubes. Conclusion: In the later part, the functionalization of carbon nanotubes was reviewed in detail, which is important to make them biocompatible and stable in biological systems and render them a great property of loading various biomolecules diagnostic and therapeutic moieties. Lastly, an inclusive description of the potential biomedical applications has been given followed by insights into the future.


2020 ◽  
Vol 11 ◽  
pp. 204173142096729
Author(s):  
Nathalie Sällström ◽  
Andrew Capel ◽  
Mark P Lewis ◽  
Daniel S Engstrøm ◽  
Simon Martin

Herein, the cytotoxicity of a novel zwitterionic sulfobetaine hydrogel system with a nano-clay crosslinker has been investigated. We demonstrate that careful selection of the composition of the system (monomer to Laponite content) allows the material to be formed into controlled shapes using an extrusion based additive manufacturing technique with the ability to tune the mechanical properties of the product. Moreover, the printed structures can support their own weight without requiring curing during printing which enables the use of a printing-then-curing approach. Cell culture experiments were conducted to evaluate the neural cytotoxicity of the developed hydrogel system. Cytotoxicity evaluations were conducted on three different conditions; a control condition, an indirect condition (where the culture medium used had been in contact with the hydrogel to investigate leaching) and a direct condition (cells growing directly on the hydrogel). The result showed no significant difference in cell viability between the different conditions and cells were also found to be growing on the hydrogel surface with extended neurites present.


2021 ◽  
Vol 2063 (1) ◽  
pp. 012015
Author(s):  
Saad Ali Ahmed ◽  
Alaa Abdulnabi Ahmed ◽  
Mohamed Hassan Abdul Latif

Abstract A process of bacterial cellulose gold nanocomposite has been investigated based on experimental work and cited literature. A literature review on the production process is carried out in this study. Bacterial cellulose is a high crystalline fabric material generally used in biomedical applications. A Nanocomposite was made by synthesis from gold and bacterial cellulose. The experimental work includes growing, and isolating bacterial cellulose, preparation of gold Nanoparticles and preparation of Nano composite. Nanoparticle’s formation and adsorption on the cellulose tissue have been observed visually, where a colour change was observed. The predicted particle size for the gold nanoparticles was (2-100) nm.


RSC Advances ◽  
2016 ◽  
Vol 6 (24) ◽  
pp. 20276-20285 ◽  
Author(s):  
Amany M. Fekry

A novel nano-composite film coat of organic/inorganic composition including chitosan (CS), TiO2 nanoparticles (TO) and hydroxyapatite (HA) nanoparticles, was synthesized on a Ti–6Al–4V alloy surface.


Author(s):  
T. L. Hayes

Biomedical applications of the scanning electron microscope (SEM) have increased in number quite rapidly over the last several years. Studies have been made of cells, whole mount tissue, sectioned tissue, particles, human chromosomes, microorganisms, dental enamel and skeletal material. Many of the advantages of using this instrument for such investigations come from its ability to produce images that are high in information content. Information about the chemical make-up of the specimen, its electrical properties and its three dimensional architecture all may be represented in such images. Since the biological system is distinctive in its chemistry and often spatially scaled to the resolving power of the SEM, these images are particularly useful in biomedical research.In any form of microscopy there are two parameters that together determine the usefulness of the image. One parameter is the size of the volume being studied or resolving power of the instrument and the other is the amount of information about this volume that is displayed in the image. Both parameters are important in describing the performance of a microscope. The light microscope image, for example, is rich in information content (chemical, spatial, living specimen, etc.) but is very limited in resolving power.


Sign in / Sign up

Export Citation Format

Share Document