In situ high-temperature X-ray diffraction, FT-IR and thermal analysis studies of the reaction between natural hydroxyapatite and aluminum powder

2018 ◽  
Vol 136 (4) ◽  
pp. 1515-1526 ◽  
Author(s):  
A. Mokhtari ◽  
H. Belhouchet ◽  
A. Guermat
1997 ◽  
Vol 12 (3) ◽  
pp. 616-618 ◽  
Author(s):  
L. L. Ye ◽  
Z. G. Liu ◽  
S. D. Li ◽  
M. X. Quan ◽  
Z. Q. Hu

The combustion reaction while mechanical alloying (MA) the Al–Ti–C system has been detected by in situ thermal analysis and the results of x-ray diffraction (XRD). Based on the information provided by in situ thermal analysis, the reaction temperature is estimated to be 1677 K, which is in good agreement with the value of the adiabatic temperature of 1700 K. It is considered that the formation reaction of Ti–C, which ignited by the heavy collisions of milling balls, induced the following reaction between Ti and Al at high temperature.


2020 ◽  
Author(s):  
Mouatamid El Hazzat ◽  
Adnane El Hamidi ◽  
Mohammed Halim ◽  
said ARSALANE

Abstract This study focused on a detailed examination of the thermal behavior of Brushite-based calcium phosphate (CaHPO 4 .2H 2 O, DCPD) to identify and characterize the intermediate phases which have been the subject of previous several controversies. For that, in situ high-temperature X-ray diffraction supported by infrared spectroscopy, thermal analysis, and scanning electron microscopy analysis were used and the results showed that the progressive thermal stress of DCPD in air resulted in a heterogeneous formulation consisting of dibasic calcium phosphate anhydrous (CaHPO 4 , DCPA) and an amorphous phase, which appears at low temperatures (~160 °C) and persists up to 375 °C. The deep examination of the amorphous phase by infrared spectroscopy revealed that its chemical composition is similar to that of disordered calcium pyrophosphate (Ca 2 P 2 O 7 , CPP) with the appearance of a characteristic band δ(P-O-P), located at 740 cm -1 . This IR band is shifted to low frequencies (725 cm -1 ) as the temperature is increased, indicating the crystallization of the amorphous phase into γ-CPP. The high temperature treatment (≥ 375 °C) leads to b-CPP polymorph. According to the present characterization results, obtaining pure DCPA from the thermal dehydration of DCPD is not effective and leads to biphasic materials including an amorphous phase.


2012 ◽  
Vol 217-219 ◽  
pp. 733-736
Author(s):  
Xiu Mei Han ◽  
Shu Ai Hao ◽  
Ying Ling Wang ◽  
Gui Fang Sun ◽  
Xi Wei Qi

Zn2SiO4:Eu3+, Dy3+ phosphors have been prepared through the sol-gel process. X-ray diffraction (XRD), thermogravimetric and ddifferential thermal analysis (TG-DTA), FT-IR spectra and photoluminescence spectra were used to characterize the resulting phosphors. The results of XRD indicated that the phosphors crystallized completely at 1000oC. In Zn2SiO4:Eu3+,Dy3+ phosphors, the Eu3+ and Dy3+ show their characteristic red(613nm, 5D0-7F2), blue (481nm, 4F9/2–6H15/2) and yellow (577nm, 4F9/2–6H13/2) emissions.


2006 ◽  
Vol 70 (6) ◽  
pp. 467-472 ◽  
Author(s):  
Tomonori Nambu ◽  
Nobue Shimizu ◽  
Hisakazu Ezaki ◽  
Hiroshi Yukawa ◽  
Masahiko Morinaga ◽  
...  

2008 ◽  
Vol 452 (2) ◽  
pp. 446-450 ◽  
Author(s):  
Qiuguo Xiao ◽  
Ling Huang ◽  
Hui Ma ◽  
Xinhua Zhao

2005 ◽  
Vol 20 (02) ◽  
pp. 94-96 ◽  
Author(s):  
Thomas N. Blanton ◽  
Swavek Zdzieszynski ◽  
Michael Nicholas ◽  
Scott Misture

Sign in / Sign up

Export Citation Format

Share Document