Luminescent Properties of Zn2SiO4:Eu3+,Dy3+ Phosphors via Sol-Gel Process

2012 ◽  
Vol 217-219 ◽  
pp. 733-736
Author(s):  
Xiu Mei Han ◽  
Shu Ai Hao ◽  
Ying Ling Wang ◽  
Gui Fang Sun ◽  
Xi Wei Qi

Zn2SiO4:Eu3+, Dy3+ phosphors have been prepared through the sol-gel process. X-ray diffraction (XRD), thermogravimetric and ddifferential thermal analysis (TG-DTA), FT-IR spectra and photoluminescence spectra were used to characterize the resulting phosphors. The results of XRD indicated that the phosphors crystallized completely at 1000oC. In Zn2SiO4:Eu3+,Dy3+ phosphors, the Eu3+ and Dy3+ show their characteristic red(613nm, 5D0-7F2), blue (481nm, 4F9/2–6H15/2) and yellow (577nm, 4F9/2–6H13/2) emissions.

2012 ◽  
Vol 512-515 ◽  
pp. 178-181
Author(s):  
Xiu Mei Han ◽  
Deng Hui Ren ◽  
Ying Ling Wang ◽  
Gui Fang Sun ◽  
Xi Wei Qi

MgLaLiSi2O7:Eu3+ phosphors have been prepared through the sol-gel process. X-ray diffraction (XRD), thermogravimetric and ddifferential thermal analysis (TG-DTA), FT-IR spectra and photoluminescence spectra were used to characterize the resulting phosphors. FT-IR spectra suggested that crystallized silicates have formed in the powders annealed at 1050°C. The results of XRD indicated that the phosphors crystallized completely at 1050°C. In MgLaLiSi2O7:Eu3+ phosphors, the Eu3+ shows its characteristic red (613nm, 5D0–7F2) emissions.


2013 ◽  
Vol 538 ◽  
pp. 142-145 ◽  
Author(s):  
X.F. Chen ◽  
J. Li ◽  
T.T. Feng ◽  
Y.S. Jiang ◽  
X.H. Zhang ◽  
...  

The forsterite-structure Mg2SiO4 was successfully synthesized by the aqueous sol-gel method using Si sols dioxide and magnesium nitrate as starting materials instead of expensive organic solvent and metal alkoxides. The as-prepared nanopowders were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA) and scanning electron microscope (SEM), respectively. The results showed that the calcination process of gel consisted of a series of oxidation and combustion reactions, accompanied by significantly exothermal effects. Highly reactive nanosized Mg2SiO4 powders were successfully obtained at 850 °C with particle size of 60~80 nm.


2013 ◽  
Vol 544 ◽  
pp. 360-363 ◽  
Author(s):  
You Hua Yu ◽  
Meng Xia ◽  
Li Li Liu ◽  
Wei Jie Wu

ZnTiO3 doped with Ni 2+ ion has been prepared at a relatively low temperature of 600°C from the precursor derived from sol-gel process using deionized water as solvent. X-ray diffraction analysis indicates that the doped samples exhibit a hexagonal ZnTiO3 structure. From the luminescence spectra analysis, the introduction of Ni2+ ions into ZnTiO3 results in novel luminescent properties. And the relative intensity of the bands varies with the concentration of Ni2+ ions. It is demonstrated that the Ni2+ ion has taken the place of Zn2+ ion in the host lattice of ZnTiO3.


2005 ◽  
Vol 20 (10) ◽  
pp. 2676-2681 ◽  
Author(s):  
Maolin Pang ◽  
Xiaoming Liu ◽  
Jun Lin

R2MoO6:Eu3+ (R = Gd, Y, La) phosphors were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), reflectance spectra, photoluminescence (PL) spectra, and lifetimes were used to characterize the resulting phosphors. The results of XRD indicate that all of the R1.96Eu0.04MoO6 (R = Gd, Y, La) phosphors crystallized completely at 800 °C. Y1.96Eu0.04MoO6 and Gd1.96Eu0.04MoO6 are of isomorphous monoclinic (α) structure, while La1.96Eu0.04MoO6 preferentially adopts the tetragonal (γ) form. FE-SEM study reveals that the samples mainly consist of aggregated particles with an average grain size ranging from 100 to 250 nm. The luminescent properties of R2MoO6:Eu3+ (R = Gd, Y, La) phosphors are largely dependent on their structure, grain size, and powder morphology. The isomorphous Y2MoO6:Eu3+ and Gd2MoO6:Eu3+ phosphors show very similar luminescence properties, which differ greatly from that of the La2MoO6:Eu3+ phosphor.


2014 ◽  
Vol 1004-1005 ◽  
pp. 344-347
Author(s):  
Huan Wang

The growing necessity of biomaterials has increased the interest in calcium phosphates, particularly hydroxyapatite. In this paper, monodisperse and spherical SiO2particles have been coated with Ca10(PO4)6(OH)2:Eu3+layers via a Pechini sol-gel process, resulting in core-chell ctructured SiO2/Ca10(PO4)6(OH)2:Eu3+samples. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL) spectra were employed to characterize the SiO2/Ca10(PO4)6(OH)2:Eu3+core-shell particles. The resulted core-shell particles have perfect spherical shape with narrow size distribution, smooth surface and non-agglomeration.


2017 ◽  
Vol 748 ◽  
pp. 413-417
Author(s):  
Chun Yu Long ◽  
Fang Fang Peng ◽  
Min Min Jin ◽  
Pei Song Tang ◽  
Hai Feng Chen

Using Pr (NO3)3, butyl titanate, ethylene glycol and citric acid as main raw materials, praseodymium titanate (Pr2Ti2O7) was prepared by the sol-gel process. The samples were characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), thermal gravity-differential thermal analysis (TG-DTA), diffuse-reflection spectra (DRS) and Fourier transform infrared (FT-IR). The effect of different calcination temperature and illumination time on the photocatalytic properties of Pr2Ti2O7 was investigated. It was found that the single phase Pr2Ti2O7 could be obtained through sol-gel process and calcination at 1000 °C. The Pr2Ti2O7 samples calcination at 1000 °C were uniform , and the resulting product had a particle size of 200 nm and an optical band gap of 3.26 eV. Under ultraviolet light, the degradation of methyl orange arrived to 80.11% after 180 min of photocatalytic reaction. The Pr2Ti2O7 samples showed good photocatalytic activity for decomposition of methyl orange.


2010 ◽  
Vol 17 (01) ◽  
pp. 59-62 ◽  
Author(s):  
YOUNG-JAE KO ◽  
JONG KYU LEE ◽  
MIN-CHEOL CHU ◽  
DONG-SIK BAE

Y 2 SiO 5: Ce 3+ particles was synthesized by sol–gel process. In all samples treated at 1100°C, monoclinic X 1 phase for all cerium concentration. Luminescence spectra shows broad Ce 3+ luminescence in Y 2 SiO 5 host, which picks around 450 nm. The synthesized and calcined powders were characterized by thermogravimetry-differential scanning calorimeter (TG-DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and photoluminescence spectra (PL).


2006 ◽  
Vol 510-511 ◽  
pp. 102-105 ◽  
Author(s):  
Lorena L. Garza-Tovar ◽  
Leticia M. Torres-Martínez

Ceramic compound with the formula BaLi2Ti6O14 was prepared by sol-gel method at basic conditions, using ammonium hydroxide as hydrolysis catalyst. Some portions of gel sample obtained were heat treated at 200, 400, 600, and 800°C. Samples were characterized by X-ray diffraction (XRD), thermal analysis (DTA-TGA), UV-Vis and FTIR. Crystalline phase was formed when a sample was treated at 800°C for 6h. This material has been previously synthesized by solid state reaction using temperatures as high as 900-1150°C for 2 to 10 days. The crystal structure of BaLi2Ti6O14 is similar to that corresponding strontium containing phase, SrLi2Ti6O14, which has been reported as catalyst for oxidative dehydrogenation of lower alkanes.


2012 ◽  
Vol 624 ◽  
pp. 34-37
Author(s):  
Xiao Yan Zhang ◽  
Wen Shu Hu ◽  
Xi Wei Qi ◽  
Gui Fang Sun ◽  
Jian Quan Qi ◽  
...  

Bi2Al4O9 powders were prepared by sol-gel process. The precursors were heated at 500-800°C for 2h to obtain Bi2Al4O9 powder and X-ray diffraction (XRD), Differential thermal analysis (DTA), thermogravimetric analysis (TG), field emission scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) techniques were used to characterize precursor and derived oxide powders. XRD analysis show that the powder is still amorphous after calcined at 500°C. The peaks of Bi2Al4O9 become sharp after calcined at 575°C though still existing some amorphous phase. After calcining at 675-800°C, the powder has fully turned into pure Bi2Al4O9 phase. The crystallization process can also be confirmed by DTA-TG and IR. Calcining the precursor at 575°C, the absorption bands at 527 cm-1, 738 cm-1, 777 cm-1, and 919 cm-1are observed, which are assigned to Bi2Al4O9 and becoming stronger and sharper with the increase of temperature.


Sign in / Sign up

Export Citation Format

Share Document