Preparation methods and thermal stability of calcipotriol solid lipid nanoparticles and efficacy in plaque psoriasis treatment

Author(s):  
Guohua Ren ◽  
Ying Zhao
Author(s):  
Anahera C ◽  
Kahurangi S

Dithranol belongs to the keratolytic category, which is widely used drug in the treatment of psoriasis. The drug is virtually inexplicable in water. Many conservative quantity forms for psoriasis treatment have been have been formulated earlier, but they did not show good results. Hence in the present study, it was attempted to invent dithranol in the form of solid lipid nanoparticle. Solid lipid nanoparticles of dithranol were obtained by alteration of lipid spreading method. Preformulation studies were performed to check the compatibility of drug and excepient for the development of formulation by DSC and no statement was found. Solubility study, division coefficient purpose, UV examination, HPLC study, FTIR study were also performed. After the preformulation studies Dithranol loaded solid lipid nanoparticles was also prepared. Hence it was concluded that solid lipid nanoparticle of dithranol could be formulated.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 998
Author(s):  
Alexandra Borges ◽  
Victor de Freitas ◽  
Nuno Mateus ◽  
Iva Fernandes ◽  
Joana Oliveira

Phenolic compounds are one of the most widespread classes of compounds in nature, with several beneficial biological effects being associated with their anti-oxidant and anti-carcinogenic activities. Their application in the prevention or treatment of numerous chronic diseases have been studied, but a major drawback is still the low bioavailability of these compounds, as well as their instability towards pH, temperature, and light in some cases. Nanotechnology has emerged as an alternative to overcome these limitations, and the use of lipidic encapsulation systems is a promising technique to achieve an efficient drug delivery, protecting molecules from external factors and improving their bioavailability. In this review, solid lipid nanoparticles and nanostructured lipid carriers are highlighted as an important tool for the improvement of the bioavailability and stability of natural phenolic compounds, including their preparation methods and functionalization approaches and the discussion of several applications for putative use in cosmetic and pharmacologic products.


2021 ◽  
Vol 11 (1-s) ◽  
pp. 162-169
Author(s):  
Vasu Deva Reddy Matta

Solid lipid nanoparticles (SLNs) are in submicron size range nanoparticles and are made of biocompatible and biodegradable materials (mainly composed of lipids and surfactants) capable of incorporating both lipophilic and hydrophilic drugs. SLNs are also considered as substitute to other colloidal drug systems, also used as controlled systems and targeted delivery. SLNs can be considered as an alternative for oral drug delivery vehicle to improve the oral bioavailability of drugs, associated reduction of drug toxicity and stability of drug in both GIT and plasma. There are different techniques used for the preparation of SLNs. Generally, the preparation of SLNs and any other nanoparticle system necessitates a dispersed system as precursor; otherwise particles are produced through the use of a particular instrumentation. This review provides the summary on the techniques or methods used for the development of SLNs of poorly water soluble drugs for improved drug delivery. Keywords: Solid lipid nanoparticles, controlled delivery, precursor, techniques.


Author(s):  
M. Koroleva ◽  
I. Portnaya ◽  
E. Mischenko ◽  
I. Abutbul-Ionita ◽  
L. Kolik-Shmuel ◽  
...  

2009 ◽  
Vol 00 (00) ◽  
pp. 090820062440031-9 ◽  
Author(s):  
Jaleh Varshosaz ◽  
Mohsen Minayian ◽  
Elaheh Moazen

2009 ◽  
Vol 00 (00) ◽  
pp. 090721051030036-8
Author(s):  
Jaleh Varshosaz ◽  
Solmaz Ghaffari ◽  
Mohammad Reza Khoshayand ◽  
Fatemeh Atyabi ◽  
Shirzad Azarmi ◽  
...  

Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
C Righeschi ◽  
M Bergonzi ◽  
B Isacchi ◽  
A Bilia

Author(s):  
Pravin Patil ◽  
Anil Sharma ◽  
Subhash Dadarwal ◽  
Vijay Sharma

The objective of present investigation was to enhance brain penetration of Lamivudine, one of the most widely used drugs for the treatment of AIDS. This was achieved through incorporating the drug into solid lipid nanoparticles (SLN) prepared by using emulsion solvent diffusion technique. The formulations were characterized for surface morphology, size and size distribution, percent drug entrapment and drug release. The optimum rotation speed, resulting into better drug entrapment and percent yield, was in the range of 1000-1250 r/min. In vitro cumulative % drug release from optimized SLN formulation was found 40-50 % in PBS (pH-7.4) and SGF (pH-1.2) respectively for 10 h. After 24 h more than 65 % of the drug was released from all formulations in both mediums meeting the requirement for drug delivery for prolong period of time.


Sign in / Sign up

Export Citation Format

Share Document