Effects of partially stabilized zirconia fueled with Borassus biofuel at different piston bowl geometries in LHR engine

Author(s):  
C. Sakthi Rajan ◽  
K. Muralidharan
1987 ◽  
Vol 109 (4) ◽  
pp. 367-373
Author(s):  
D. L. Hartsock

The Weibull based “Simplified Structural Ceramic Design Technique” [1] was used to calculate the reliability of a partially stabilized zirconia (PSZ) piston bowl design. The details of the method and a set of sample calculations are presented. Test results of the piston bowl showed cracks in regions which had a high calculated probability of failure. In addition cracks developed in a region of high compressive/shear stress. Since Weibull reliability analysis only uses tensile stresses this area did not have a high calculated probability of failure. Several hypotheses are presented for the mode of failure in this region. The simplified technique was used to predict what the necessary material properties would have to be for successful PSZ insert of the design shown.


1981 ◽  
Vol 16 (5) ◽  
pp. 1428-1431 ◽  
Author(s):  
R. H. J. Hannink ◽  
M. V. Swain

2011 ◽  
Vol 49 (5) ◽  
pp. 685-689 ◽  
Author(s):  
V. V. Milyavskii ◽  
A. S. Savinykh ◽  
F. A. Akopov ◽  
L. B. Borovkova ◽  
T. I. Borodina ◽  
...  

2009 ◽  
Vol 24 (6) ◽  
pp. 2021-2028 ◽  
Author(s):  
R. Milani ◽  
R.P. Cardoso ◽  
T. Belmonte ◽  
C.A. Figueroa ◽  
C.A. Perottoni ◽  
...  

High temperature plasma nitriding of yttria-partially-stabilized zirconia in atmospheric pressure microwave plasma was investigated. The morphological, mechanical, and physicochemical characteristics of the resulting nitrided layer were characterized by different methods, such as optical and scanning electron microscopy, microindentation, x-ray diffraction, narrow resonant nuclear reaction profiling, secondary neutral mass spectrometry, and x-ray photoelectron spectroscopy, aiming at investigating the applicability of this highly efficient process for nitriding of ceramics. The structure of the plasma nitrided layer was found to be complex, composed of tetragonal and cubic zirconia, as well as zirconium nitride and oxynitride. The growth rate of the nitrided layer, 4 µm/min, is much higher than that obtained by any other previous nitriding process, whereas a typical 50% increase in Vickers hardness over that of yttria-partially-stabilized zirconia was observed.


2010 ◽  
Vol 146-147 ◽  
pp. 460-465 ◽  
Author(s):  
Sheng Hui Guo ◽  
Dong Bo Li ◽  
Li Jun Liu ◽  
Jin Hui Peng ◽  
Li Bo Zhang ◽  
...  

The stability is one most important product performance index, which can directly determine the quality of the partially stabilized zirconia (PSZ), and the stability of PSZ is always fluctuating in the commercial process, so how to accurately, quickly and easily predict the stability of PSZ in the preparation process is very important. In the present paper, a new mathematical model to predict the stability of PSZ was proposed, based on statistical theory (SLT) and support vector machine (SVM) theory, which relates the stability of PSZ and the influence factors, such as the holding temperature, rising rate of temperature, holding time, decreasing rate of temperature and hardening temperature. Typical data collected from commercial process were collected for the training samples and test samples. Then testing and analyzing was done. The results showed that the max relative error was 1.80%, the least relative error was 0%, and the average relative error was 0.58%. It is accurate and reliable to predict the stability of PSZ by SVM model. Besides, multiple influence factors can be comprehensively considered in the SVM model, thus a new highly effective method for predicting the stability of PSZ is provided for commercial application.


Sign in / Sign up

Export Citation Format

Share Document