scholarly journals An Embedded Model Estimator for Non-Stationary Random Functions Using Multiple Secondary Variables

Author(s):  
Colin Daly

AbstractAn algorithm for non-stationary spatial modelling using multiple secondary variables is developed herein, which combines geostatistics with quantile random forests to provide a new interpolation and stochastic simulation. This paper introduces the method and shows that its results are consistent and similar in nature to those applying to geostatistical modelling and to quantile random forests. The method allows for embedding of simpler interpolation techniques, such as kriging, to further condition the model. The algorithm works by estimating a conditional distribution for the target variable at each target location. The family of such distributions is called the envelope of the target variable. From this, it is possible to obtain spatial estimates, quantiles and uncertainty. An algorithm is also developed to produce conditional simulations from the envelope. As they sample from the envelope, realizations are therefore locally influenced by relative changes of importance of secondary variables, trends and variability.

2021 ◽  
Vol 4 ◽  
Author(s):  
Colin Daly

A method (Ember) for nonstationary spatial modeling with multiple secondary variables by combining Geostatistics with Random Forests is applied to a three-dimensional Reservoir Model. It extends the Random Forest method to an interpolation algorithm retaining similar consistency properties to both Geostatistical algorithms and Random Forests. It allows embedding of simpler interpolation algorithms into the process, combining them through the Random Forest training process. The algorithm estimates a conditional distribution at each target location. The family of such distributions is called the model envelope. An algorithm to produce stochastic simulations from the envelope is demonstrated. This algorithm allows the influence of the secondary variables, as well as the variability of the result to vary by location in the simulation.


1992 ◽  
Vol 1 (1) ◽  
pp. 35-52 ◽  
Author(s):  
Tomasz Łuczak ◽  
Boris Pittel

A forest ℱ(n, M) chosen uniformly from the family of all labelled unrooted forests with n vertices and M edges is studied. We show that, like the Érdős-Rényi random graph G(n, M), the random forest exhibits three modes of asymptotic behaviour: subcritical, nearcritical and supercritical, with the phase transition at the point M = n/2. For each of the phases, we determine the limit distribution of the size of the k-th largest component of ℱ(n, M). The similarity to the random graph is far from being complete. For instance, in the supercritical phase, the giant tree in ℱ(n, M) grows roughly two times slower than the largest component of G(n, M) and the second largest tree in ℱ(n, M) is of the order n⅔ for every M = n/2 +s, provided that s3n−2 → ∞ and s = o(n), while its counterpart in G(n, M) is of the order n2s−2 log(s3n−2) ≪ n⅔.


1970 ◽  
Vol 7 (02) ◽  
pp. 505-507 ◽  
Author(s):  
Gedalia Ailam ◽  
Mahabanoo N. Tata

Let {an } be an increasing sequence of positive integers and let be the family of all functions from the positive integers into the positive integers, which satisfy Assume that are random functions with probabilities and for all n > 1 and 0 elsewhere, i.e., all permissible values of f, given the past, are equally likely.


1970 ◽  
Vol 7 (2) ◽  
pp. 505-507 ◽  
Author(s):  
Gedalia Ailam ◽  
Mahabanoo N. Tata

Let {an} be an increasing sequence of positive integers and let be the family of all functions from the positive integers into the positive integers, which satisfy Assume that are random functions with probabilities and for all n > 1 and 0 elsewhere, i.e., all permissible values of f, given the past, are equally likely.


1988 ◽  
Vol 62 (03) ◽  
pp. 419-423 ◽  
Author(s):  
Baba Senowbari-Daryan ◽  
George D. Stanley

Two Upper Triassic sphinctozoan sponges of the family Sebargasiidae were recovered from silicified residues collected in Hells Canyon, Oregon. These sponges areAmblysiphonellacf.A. steinmanni(Haas), known from the Tethys region, andColospongia whalenin. sp., an endemic species. The latter sponge was placed in the superfamily Porata by Seilacher (1962). The presence of well-preserved cribrate plates in this sponge, in addition to pores of the chamber walls, is a unique condition never before reported in any porate sphinctozoans. Aporate counterparts known primarily from the Triassic Alps have similar cribrate plates but lack the pores in the chamber walls. The sponges from Hells Canyon are associated with abundant bivalves and corals of marked Tethyan affinities and come from a displaced terrane known as the Wallowa Terrane. It was a tropical island arc, suspected to have paleogeographic relationships with Wrangellia; however, these sponges have not yet been found in any other Cordilleran terrane.


Author(s):  
E. S. Boatman ◽  
G. E. Kenny

Information concerning the morphology and replication of organism of the family Mycoplasmataceae remains, despite over 70 years of study, highly controversial. Due to their small size observations by light microscopy have not been rewarding. Furthermore, not only are these organisms extremely pleomorphic but their morphology also changes according to growth phase. This study deals with the morphological aspects of M. pneumoniae strain 3546 in relation to growth, interaction with HeLa cells and possible mechanisms of replication.The organisms were grown aerobically at 37°C in a soy peptone yeast dialysate medium supplemented with 12% gamma-globulin free horse serum. The medium was buffered at pH 7.3 with TES [N-tris (hyroxymethyl) methyl-2-aminoethane sulfonic acid] at 10mM concentration. The inoculum, an actively growing culture, was filtered through a 0.5 μm polycarbonate “nuclepore” filter to prevent transfer of all but the smallest aggregates. Growth was assessed at specific periods by colony counts and 800 ml samples of organisms were fixed in situ with 2.5% glutaraldehyde for 3 hrs. at 4°C. Washed cells for sectioning were post-fixed in 0.8% OSO4 in veronal-acetate buffer pH 6.1 for 1 hr. at 21°C. HeLa cells were infected with a filtered inoculum of M. pneumoniae and incubated for 9 days in Leighton tubes with coverslips. The cells were then removed and processed for electron microscopy.


Author(s):  
A.D. Hyatt

Bluetongue virus (BTV) is the type species os the genus orbivirus in the family Reoviridae. The virus has a fibrillar outer coat containing two major structural proteins VP2 and VP5 which surround an icosahedral core. The core contains two major proteins VP3 and VP7 and three minor proteins VP1, VP4 and VP6. Recent evidence has indicated that the core comprises a neucleoprotein center which is surrounded by two protein layers; VP7, a major constituent of capsomeres comprises the outer and VP3 the inner layer of the core . Antibodies to VP7 are currently used in enzyme-linked immunosorbant assays and immuno-electron microscopical (JEM) tests for the detection of BTV. The tests involve the antibody recognition of VP7 on virus particles. In an attempt to understand how complete viruses can interact with antibodies to VP7 various antibody types and methodologies were utilized to determine the physical accessibility of the core to the external environment.


Sign in / Sign up

Export Citation Format

Share Document