scholarly journals Lattice ground states for embedded-atom models in 2D and 3D

2021 ◽  
Vol 111 (4) ◽  
Author(s):  
Laurent Bétermin ◽  
Manuel Friedrich ◽  
Ulisse Stefanelli

AbstractThe Embedded-Atom Model (EAM) provides a phenomenological description of atomic arrangements in metallic systems. It consists of a configurational energy depending on atomic positions and featuring the interplay of two-body atomic interactions and nonlocal effects due to the corresponding electronic clouds. The purpose of this paper is to mathematically investigate the minimization of the EAM energy among lattices in two and three dimensions. We present a suite of analytical and numerical results under different reference choices for the underlying interaction potentials. In particular, Gaussian, inverse-power, and Lennard-Jones-type interactions are addressed.

1990 ◽  
Vol 187 ◽  
Author(s):  
F.H. Streitz ◽  
K. Sieradzki ◽  
R. C. Cammarata

AbstractWe report on the results of molecular dynamics simulations of thin unsupported fcc films ranging in thickness from 20 layers to a monolayer. The films were oriented with either (001) or (111) free surface normals. The atomic interactions were modelled using a standard Lennard-Jones potential and a short range analytic form of the embedded atom potential. The elastic moduli of the films were determined by measuring their response to very low levels of applied stress.We find that the embedded atom and Lennard-Jones results are in relative agreement for (001) films and qualitative disagreement for (111) oriented films. We relate these differences to the nature of the interatomic potential and the thermodynamic instability of the (001) surface.


1994 ◽  
Vol 49 (6) ◽  
pp. 663-670
Author(s):  
S. Sh. Soulayman ◽  
C. Ch. Marti ◽  
Ch. Ch. Guilpin

Abstract In this paper we apply the method developed in part I for describing the crystalline state of two and three dimensional inert gases. For strong anharmonicity of fourth order, the equations of state of these gases are obtained. This way we calculate the thermoelastic properties of two and three dimensional argon, krypton and xenon using the Lennard-Jones potential. The corrections to the Helmholtz free energy and thermodynamic properties due to quantum effects are considered. The results are compared with the available experimental data.


2020 ◽  
Vol 9 (4) ◽  
pp. 233 ◽  
Author(s):  
Benjamin Ulmer ◽  
John Hall ◽  
Faramarz Samavati

Geospatial sensors are generating increasing amounts of three-dimensional (3D) data. While Discrete Global Grid Systems (DGGS) are a useful tool for integrating geospatial data, they provide no native support for 3D data. Several different 3D global grids have been proposed; however, these approaches are not consistent with state-of-the-art DGGSs. In this paper, we propose a general method that can extend any DGGS to the third dimension to operate as a 3D DGGS. This extension is done carefully to ensure any valid DGGS can be supported, including all refinement factors and non-congruent refinement. We define encoding, decoding, and indexing operations in a way that splits responsibility between the surface DGGS and the 3D component, which allows for easy transference of data between the 2D and 3D versions of a DGGS. As a part of this, we use radial mapping functions that serve a similar purpose as polyhedral projection in a conventional DGGS. We validate our method by creating three different 3D DGGSs tailored for three specific use cases. These use cases demonstrate our ability to quickly generate 3D global grids while achieving desired properties such as support for large ranges of altitudes, volume preservation between cells, and custom cell aspect ratio.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 476
Author(s):  
Joshua Chisambi ◽  
Bjorn von der Heyden ◽  
Muofhe Tshibalanganda ◽  
Stephan Le Roux

In this contribution, we highlight a correlative approach in which three-dimensional structural/positional data are combined with two dimensional chemical and mineralogical data to understand a complex orogenic gold mineralization system; we use the Kirk Range (southern Malawi) as a case study. Three dimensional structures and semi-quantitative mineral distributions were evaluated using X-ray Computed Tomography (XCT) and this was augmented with textural, mineralogical and chemical imaging using Scanning Electron Microscopy (SEM) and optical microscopy as well as fire assay. Our results detail the utility of the correlative approach both for quantifying gold concentrations in core samples (which is often nuggety and may thus be misrepresented by quarter- or half-core assays), and for understanding the spatial distribution of gold and associated structures and microstructures in 3D space. This approach overlays complementary datasets from 2D and 3D analytical protocols, thereby allowing a better and more comprehensive understanding on the distribution and structures controlling gold mineralization. Combining 3D XCT analyses with conventional 2D microscopies derive the full value out of a given exploration drilling program and it provides an excellent tool for understanding gold mineralization. Understanding the spatial distribution of gold and associated structures and microstructures in 3D space holds vast potential for exploration practitioners, especially if the correlative approach can be automated and if the resultant spatially-constrained microstructural information can be fed directly into commercially available geological modelling software. The extra layers of information provided by using correlative 2D and 3D microscopies offer an exciting new tool to enhance and optimize mineral exploration workflows, given that modern exploration efforts are targeting increasingly complex and low-grade ore deposits.


In classical mechanics (c.m.), and near the semi-classical limit h →0 of quantum mechanics (s.c.l.), the enhancement factors α ≡ ρ 0 /ρ ∞ are found for scattering by attractive central potentials U(r) ; here ρ 0,∞ (and v 0,∞ ) are the particle densities (and speeds) at the origin and far upstream in the incident beam. For finite potentials ( U (0) > — ∞), and when there are no turning points, the preceding paper found both in c.m., and near the s.c.l. (which then covers high v ∞ ), α 1 = v ∞ / v 0 , α 2 = 1, α 3 = v 0 / v ∞ respectively in one dimension (1D), 2D and 3D. The argument is now extended to potentials (still without turning points), where U ( r →0) ~ ─ C/r q , with 0 < q < 1 in ID (where r ≡ | x | ), and 0 < q < 2 in 2D and 3D, since only for such q can classical trajectories and quantum wavefunctions be defined unambiguously. In c.m., α 1 (c.m.) = 0, α 3 (c.m.) = ∞, and α 2 (c.m.) = (1 —½ q ) N , where N = [integer part of (1 ─½ q ) -1 ]is the number of trajectories through any point ( r , θ) in the limit r → 0. All features of U(r) other than q are irrelevant. Near the s.c.l. (which now covers low v ∞ ) a somewhat delicate analysis is needed, matching exact zero-energy solutions at small r to the ordinary W.K.B. approximation at large r ; for small v ∞ / u it yields the leading terms α 1 (s.c.l.) = Λ 1 (q) v ∞ / u , α 2 (s.c.I) = (1 ─½ q ) -1 , α 3 (s.c.l.)= Λ 3 ( q ) u/v ∞ , where u ≡ (C/h q m 1-q ) 1/(2-q) is a generalized Bohr velocity. Here Λ 1,3 are functions of q alone, given in the text; as q →0 the α (s.c.l.) agree with the α quoted above for finite potentials. Even in the limit h = 0, α 2 (s.c.l.) and α 2 (c.m.) differ. This paradox in 2D is interpreted loosely in terms of quantal interference between the amplitudes corresponding to the N classical trajectories. The Coulomb potential ─ C/r is used as an analytically soluble example in 2D as well as in 3D. Finally, if U(r) away from the origin depends on some intrinsic range parameter α(e.g. U = ─ C exp (─r/a)/r q ) , and if, near the s.c.l., v ∞ / u is regarded as a function not of h but more realistically of v ∞ , then the expressions α (s.c.l.) above apply only in an intermediate range 1/ a ≪ mv ∞ / h ≪ ( mC/h 2 ) 1/(2- q ) which exists only if a ≫ ( h 2 / mC ) 1/(2- q ) ).


1985 ◽  
Vol 63 ◽  
Author(s):  
Brian W. Dodson ◽  
Paul A. Taylor

ABSTRACTThe authors have previously introduced a method, based on Monte Carlo techniques, for simulation of crystal growth processes in a continuous space. We have applied the method, initially used to simulate growth of two-dimensional Lennard-Jones systems, to treat growth of silicon in three dimensions. The interaction model for silicon is taken to be the recently introduced Stillinger-Weber (S-W) potential, which is a two- and threebody classical potential. Although the early stages of growth seem to be well modelled by the S-W potential, growth of even a single monolayer of epitaxial (111) silicon does not seem to be possible. Modifications to the S-W potential were considered, and found to be unacceptable physically. More accurate treatment of non-ideal atomic configuration energies is necessary to arrive at physically realistic growth simulations.


2008 ◽  
Vol 18 (01) ◽  
pp. 119-126
Author(s):  
L. Y. CHEN ◽  
N. J. M. HORING

We study the transition pathways of a Lennard-Jones cluster of seven particles in three dimensions. Low lying saddle points of the LJ cluster, which can be reached directly from a minimum without passing through another minimum, are identified without any presumption of their characteristics, nor of the product states they lead to. The probabilities are computed for paths going from a given minimum to the surrounding saddle points. These probabilities are directly related to prefactors in the rate formula. This determination of the rate prefactors includes all anharmonicities, near or far from saddle points, which are pertinent in the very sophisticated energy landscape of LJ clusters and in many other complex systems.


Sign in / Sign up

Export Citation Format

Share Document