Acacetin inhibits the invasion and migration of human non-small cell lung cancer A549 cells by suppressing the p38α MAPK signaling pathway

2011 ◽  
Vol 350 (1-2) ◽  
pp. 135-148 ◽  
Author(s):  
Shang-Tao Chien ◽  
Su-Shun Lin ◽  
Cheng-Kun Wang ◽  
Yuan-Bin Lee ◽  
Kun-Shiang Chen ◽  
...  
2021 ◽  
Vol 11 ◽  
Author(s):  
Juan Wu ◽  
Ru Chen ◽  
Huiqing Shen ◽  
Ting Yan ◽  
Yu Qian ◽  
...  

Ivosidenib is an isocitrate dehydrogenase mutant inhibitor that the US Food and Drug Administration recently approved for the treatment of leukemia. Studies suggested that ivosidenib may inhibit the progression of non-small cell lung cancer (NSCLC). In the present study, we explored RNAs and their potential regulatory mechanisms by which ivosidenib treats NSCLC cells. We used MTT assays, Transwell assays, and flow cytometry to measure the anti-tumor effects of ivosidenib in NSCLC cells. We performed whole transcriptome sequencing to determine differentially expressed mRNAs (DE-mRNAs) and non-coding RNAs (ncRNA). We used GO and KEGG pathway enrichment analyses to identify the functions and potential mechanisms. According to miRNA target interactions, we constructed a competing endogenous network. Ivosidenib inhibited the proliferation, invasion, and migration of NSCLC cells and inhibited tumor growth in vivo. We identified 212 DE-mRNAs, four DE-miRNAs, and 206 DE-lncRNAs in ivosidenib-treated NSCLC cells compared to untreated NSCLC cells. DE-mRNAs were significantly enriched in the cancer-associated pathways, including the TGF-β signaling pathway, the PI3K-Akt signaling pathway, the Jak-STAT signaling pathway, the MAPK signaling pathway, the Rap1 signaling pathway, and cell adhesion molecules. Based on the competing endogenous RNA hypothesis, we constructed lncRNA-miRNA-mRNA networks to elucidate the regulatory relationships between mRNA and ncRNA. We found that qRT-PCR results showed corresponding expression trends of differential genes with sequencing data. Our results provide insights into the molecular basis of ivosidenib suppression of NSCLC.


2020 ◽  
Vol 20 (8) ◽  
pp. 982-988 ◽  
Author(s):  
Le-Le Zhang ◽  
Han Bao ◽  
Yu-Lian Xu ◽  
Xiao-Ming Jiang ◽  
Wei Li ◽  
...  

Background: Cassane-type diterpenoids are widely distributed in the medical plants of genus Caesalpinia. To date, plenty of cassane diterpenoids have been isolated from the genus Caesalpinia, and some of them were documented to exhibit multiple biological activities. However, the effects of these compounds on autophagy have never been reported. Objective: To investigate the effects and mechanisms of the cassane diterpenoids including Phanginin R (PR) on autophagy in Non-Small Cell Lung Cancer (NSCLC) A549 cells. Methods: Western blot analysis and immunofluorescence assay were performed to investigate the effects of the compounds on autophagic flux in A549 cells. The pathway inhibitor and siRNA interference were used to investigate the mechanism of PR. MTT assay was performed to detect cell viability. Results: PR treatment upregulated the expression of phosphatidylethanolamine-modified microtubule-associated protein Light-Chain 3 (LC3-II) in A549 cells. Immunofluorescence assay showed that PR treatment increased the production of red-fluorescent puncta in mRFP-GFP-LC3 plasmid-transfected cells, indicating PR promoted autophagic flux in A549 cells. PR treatment activated the c-Jun N-terminal Kinase (JNK) signaling pathway while it did not affect the classical Akt/mammalian Target of Rapamycin (mTOR) pathway. Pretreatment with the JNK inhibitor SP600125 or siRNA targeting JNK or c-Jun suppressed PR-induced autophagy. In addition, cotreatment with the autophagy inhibitor Chloroquine (CQ) or inhibition of the JNK/c-Jun signaling pathway increased PR-induced cytotoxicity. Conclusion: PR induced cytoprotective autophagy in NSCLC A549 cells via the JNK/c-Jun signaling pathway, and autophagy inhibition could further improve the anti-cancer potential of PR.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hua Luo ◽  
Yukun Zhang ◽  
Guangmei Qin ◽  
Bing Jiang ◽  
Lili Miao

Abstract Background MCM3AP-AS1 is a recently characterized lncRNA playing an oncogenic role in several cancers. However, its role in lung cancer remains unknown. Here, we aimed to explore the functions of MCM3AP-AS1 in small cell lung cancer (SCLC) and the possible underlying mechanisms. Methods MCM3AP-AS1 and ROCK1 levels in SCLC patients were analyzed by qPCR. RNA pull-down and luciferase assays were performed to analyze the interaction between MCM3AP-AS1 and miR-148a. ROCK1 mRNA and protein levels were detected by qPCR and Western blot, respectively. Cell invasion and migration were analyzed by Transwell assays. Results MCM3AP-AS1 was upregulated in patients with SCLC, and a high MCM3AP-AS1 level was accompanied by a low survival rate. The binding of MCM3AP-AS1 to miR-148a predicted by bioinformatics analysis was verified by RNA pull-down and luciferase assays. However, MCM3AP-AS1 and miR-148a did not affect each other’s expression. ROCK1 was upregulated in SCLC tissues and positively correlated with MCM3AP-AS1. In SCLC cells, MCM3AP-AS1 overexpression increased ROCK1 and promoted cancer cell invasion and migration, while miR-148a overexpression showed the opposite effects and attenuated the effects of MCM3AP-AS1 overexpression on ROCK1 expression and cell behaviors. Conclusions MCM3AP-AS1 sponges miR-148a, thereby increasing SCLC cell invasion and migration via upregulating ROCK1 expression.


2020 ◽  
Vol 34 (5) ◽  
pp. 1142-1153 ◽  
Author(s):  
Xiao‐Zhong Liao ◽  
Ying Gao ◽  
Ling‐Ling Sun ◽  
Jia‐Hui Liu ◽  
Han‐Rui Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document