New insights into the selective inhibition of the β-carbonic anhydrases of pathogenic bacteria Burkholderia pseudomallei and Francisella tularensis: a proteochemometrics study

2018 ◽  
Vol 23 (2) ◽  
pp. 263-273 ◽  
Author(s):  
Behnam Rasti ◽  
Sargol Mazraedoost ◽  
Hanieh Panahi ◽  
Mojtaba Falahati ◽  
Farnoosh Attar
2021 ◽  
Vol 22 (2) ◽  
pp. 571
Author(s):  
Viviana De Luca ◽  
Andrea Petreni ◽  
Alessio Nocentini ◽  
Andrea Scaloni ◽  
Claudiu T. Supuran ◽  
...  

Carbonic anhydrases (CAs) are essential metalloenzymes in nature, catalyzing the carbon dioxide reversible hydration into bicarbonate and proton. In humans, breathing and many other critical physiological processes depend on this enzymatic activity. The CA superfamily function and inhibition in pathogenic bacteria has recently been the object of significant advances, being demonstrated to affect microbial survival/virulence. Targeting bacterial CAs may thus be a valid alternative to expand the pharmacological arsenal against the emergence of widespread antibiotic resistance. Here, we report an extensive study on the inhibition profile of the recently discovered ι-CA class present in some bacteria, including Burkholderia territorii, namely BteCAι, using substituted benzene-sulfonamides and clinically licensed sulfonamide-, sulfamate- and sulfamide-type drugs. The BteCAι inhibition profile showed: (i) several benzene-sulfonamides with an inhibition constant lower than 100 nM; (ii) a different behavior with respect to other α, β and γ-CAs; (iii) clinically used drugs having a micromolar affinity. This prototype study contributes to the initial recognition of compounds which efficiently and selectively inhibit a bacterial member of the ι-CA class, for which such a selective inhibition with respect to other protein isoforms present in the host is highly desired and may contribute to the development of novel antimicrobials.


2020 ◽  
Vol 21 (2) ◽  
pp. 598 ◽  
Author(s):  
Andrea Angeli ◽  
Mariana Pinteala ◽  
Stelian S. Maier ◽  
Bogdan C. Simionescu ◽  
Andrea Milaneschi ◽  
...  

A series of 2-thio- and 2-seleno-acetamides bearing the benzenesulfonamide moiety were evaluated as Carbonic Anhydrase (CA, EC 4.2.1.1) inhibitors against different pathogenic bacteria such as the Vibrio cholerae (VchCA-α and VchCA-β), Burkholderia pseudomallei (BpsCA-β and BpsCA-γ), Mycobacterium tuberculosis (Rv3723-β) and the Salmonella enterica serovar Typhimurium (StCA2-β). The molecules represent interesting leads worth developing as innovative antibacterial agents since they possess new mechanism of action and isoform selectivity preferentially against the bacterial expressed CAs. The identification of potent and selective inhibitors of bacterial CAs may lead to tools also useful for deciphering the physiological role(s) of such proteins.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cristina Campestre ◽  
Viviana De Luca ◽  
Simone Carradori ◽  
Rossella Grande ◽  
Vincenzo Carginale ◽  
...  

Our understanding of the function of bacterial carbonic anhydrases (CAs, EC 4.2.1.1) has increased significantly in the last years. CAs are metalloenzymes able to modulate CO2, HCO3– and H+ concentration through their crucial role in catalysis of reversible CO2 hydration (CO2 + H2O ⇄ HCO3– + H+). In all living organisms, CA activity is linked to physiological processes, such as those related to the transport and supply of CO2 or HCO3–, pH homeostasis, secretion of electrolytes, biosynthetic processes and photosynthesis. These important processes cannot be ensured by the very low rate of the non-catalyzed reaction of CO2 hydration. It has been recently shown that CAs are important biomolecules for many bacteria involved in human infections, such as Vibrio cholerae, Brucella suis, Salmonella enterica, Pseudomonas aeruginosa, and Helicobacter pylori. In these species, CA activity promotes microorganism growth and adaptation in the host, or modulates bacterial toxin production and virulence. In this review, recent literature in this research field and some of the above-mentioned issues are discussed, namely: (i) the implication of CAs from bacterial pathogens in determining the microorganism growth and virulence; (ii) the druggability of these enzymes using classical CA inhibitors (CAIs) of the sulfonamide-type as examples; (iii) the role played by Helicobacter pylori CAs in the acid tolerance/adaptation of the microbe within the human abdomen; (iv) the role of CAs played in the outer membrane vesicles spawned by H. pylori in its planktonic and biofilm phenotypes; (v) the possibility of using H. pylori CAIs in combination with probiotic strains as a novel anti-ulcer treatment approach. The latter approach may represent an innovative and successful strategy to fight gastric infections in the era of increasing resistance of pathogenic bacteria to classical antibiotics.


2018 ◽  
Vol 33 (1) ◽  
pp. 945-950 ◽  
Author(s):  
Azzurra Stefanucci ◽  
Andrea Angeli ◽  
Marilisa Pia Dimmito ◽  
Grazia Luisi ◽  
Sonia Del Prete ◽  
...  

mSphere ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Robert J. Hogan ◽  
Eric R. Lafontaine

ABSTRACT Burkholderia pseudomallei and Burkholderia mallei are the causative agents of melioidosis and glanders, respectively. There is no vaccine to protect against these highly pathogenic bacteria, and there is concern regarding their emergence as global public health (B. pseudomallei) and biosecurity (B. mallei) threats. In this issue of mSphere, an article by Khakhum and colleagues (N. Khakhum, P. Bharaj, J. N. Myers, D. Tapia, et al., mSphere 4:e00570-18, 2019, https://doi.org/10.1128/mSphere.00570-18) describes a novel vaccination platform with excellent potential for cross-protection against both Burkholderia species. The report also highlights the importance of antibodies in immunity against these facultative intracellular organisms.


Biologia ◽  
2008 ◽  
Vol 63 (1) ◽  
Author(s):  
Elena Kocianová ◽  
Dušan Blaškovič ◽  
Katarína Smetanová ◽  
Katarína Schwarzová ◽  
Vojtech Boldiš ◽  
...  

AbstractTicks are well-known vectors for a wide range of pathogenic microorganisms. We examined the presence of Rickettsia spp., Anaplasma spp., Borrelia spp., Coxiella burnetii and Francisella tularensis in Ixodes ricinus ticks collected in central Slovakia using oligo-chip based assay. Rickettsiae were detected in 5.6% of examined ticks. Borreliae and anaplasmae were identified in 2.1% and 2.8% ticks, respectively. All tested samples were negative for presence of Coxiella burnetii and Francisella tularensis. All these results were compared with those obtained by PCR analysis, and a close correlation between them was found. In addition, rickettsiae of spotted fever group (SFG), Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato were found in ticks using genera or species-specific PCR methods. They are circulating in 10 out of 18 studied localities.


Sign in / Sign up

Export Citation Format

Share Document