A Study of Metal-Powder Alloy KhN56KVMTYuB for GTE Disks Under Aggressive Impact of Sodium Chlorides and Sulfates

Author(s):  
L. B. Getsov ◽  
M. Yu. Balandina ◽  
A. B. Laptev ◽  
D. A. Movenko ◽  
A. I. Puzanov ◽  
...  
Keyword(s):  
Alloy Digest ◽  
2009 ◽  
Vol 58 (12) ◽  

Abstract Ancorsteel 30 HP is a prealloyed low-alloy steel powder alloy with moderate hardenability. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on heat treating and powder metal forms. Filing Code: CS-151. Producer or source: Hoeganaes Corporation.


Alloy Digest ◽  
2012 ◽  
Vol 61 (6) ◽  

Abstract Ancorsteel 4600V alloy is a water-atomized low-alloy sinter-hardening metal powder. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on heat treating and powder metal forms. Filing Code: SA-655. Producer or source: Hoeganaes Corporation.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 896
Author(s):  
Matthias Schmitt ◽  
Albin Gottwalt ◽  
Jakob Winkler ◽  
Thomas Tobie ◽  
Georg Schlick ◽  
...  

The carbon content of steel affects many of its essential properties, e.g., hardness and mechanical strength. In the powder bed fusion process of metals using a laser beam (PBF-LB/M), usually, pre-alloyed metal powder is solidified layer-by-layer using a laser beam to create parts. A reduction of the carbon content in steels is observed during this process. This study examines adding carbon particles to the metal powder and in situ alloying in the PBF-LB/M process as a countermeasure. Suitable carbon particles are selected and their effect on the particle size distribution and homogeneity of the mixtures is analysed. The workability in PBF-LB is then shown. This is followed by an evaluation of the resulting mechanical properties (hardness and mechanical strength) and microstructure in the as-built state and the state after heat treatment. Furthermore, potential use cases like multi-material or functionally graded parts are discussed.


2021 ◽  
Vol 113 (1-2) ◽  
pp. 407-417
Author(s):  
Omid Emadinia ◽  
Maria Teresa Vieira ◽  
Manuel Fernando Vieira

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4182
Author(s):  
Alan Wilmański ◽  
Magdalena Zarzecka-Napierała ◽  
Zbigniew Pędzich

This paper describes combusting loose powder beds of mixtures of aluminum metal powders and aluminum oxide powders with various grain sizes under various nitrogen pressure. The synthesis conditions required at least 20/80 weight ratio of aluminum metal powder to alumina powder in the mix to reach approximately 80 wt% of γ-AlON in the products. Finely ground fused white alumina with a mean grain size of 5 μm was sufficient to achieve results similar to very fine alumina with 0.3 μm grains. A lower nitrogen pressure of 1 MPa provided good results, allowing a less robust apparatus to be used. The salt-assisted combustion synthesis upon addition of 10 wt% of ammonium nitrite resulted in a slight increase in product yield and allowed lower aluminum metal powder content in mixes to be ignited. Increasing the charge mass five times resulted in a very similar γ-AlON yield, providing a promising technology for scaling up. Synthesis in loose powder beds could be utilized for effective production of relatively cheap and uniform AlON powder, which could be easily prepared for forming and sintering without intensive grounding and milling, which usually introduce serious contamination.


Sign in / Sign up

Export Citation Format

Share Document