scholarly journals Time integration of rigid bodies modelled with three rotation parameters

Author(s):  
Stefan Holzinger ◽  
Johannes Gerstmayr

AbstractThree rotation parameters are commonly used in multibody dynamics or in spacecraft attitude determination to represent large spatial rotations. It is well known, however, that the direct time integration of kinematic equations with three rotation parameters is not possible in singular points. In standard formulations based on three rotation parameters, singular points are avoided, for example, by applying reparametrization strategies during the time integration of the kinematic equations. As an alternative, Euler parameters are commonly used to avoid singular points. State-of-the-art approaches use Lie group methods, specifically integrators, to model large rigid body rotations. However, the former methods are based on additional information, e.g. the rotation matrix, which must be computed in each time step. Thus, the latter method is difficult to incorporate into existing codes that are based on three rotation parameters. In this contribution, a novel approach for solving rotational kinematics in terms of three rotation parameters is presented. The proposed approach is illustrated by the example of the rotation vector and the Euler angles. In the proposed approach, Lie group time integration methods are used to compute consistent updates for the rotation vector or the Euler angles in each time step and therefore singular points can be surmounted and the accuracy is higher as compared to the direct time integration of rotation parameters. The proposed update formulas can be easily integrated into existing codes that use either the rotation vector or Euler angles. The advantages of the proposed approach are demonstrated with two numerical examples.

Author(s):  
Stefan Holzinger ◽  
Johannes Gerstmayr

Abstract Rigid bodies are an essential part of multibody systems. As there are six degrees of freedom in rigid bodies, it is natural but also precarious to use three parameters for the displacement and three parameters for the rotation parameters — since there is no singularity-free description of spatial rotations based on three rotation parameters. Standard formulations based on three rotation parameters avoid singularities, e.g. by applying reparameterization strategies during the time integration of the rotational kinematic equations. Alternatively, Euler parameters are commonly used to avoid singularities. State of the art approaches use Lie group methods, specifically integrators, to model rigid body motion without the need for the above mentioned solutions. However, the methods so far have been based on additional information, e.g., the rotation matrix, which has to been computed in each step. The latter procedure is thus difficult to be implemented in existing codes that are based on three rotation parameters. In this paper, we use the rotation vector to model large rotations. Whereby Lie group integration methods are used to compute consistent updates for the rotation vector in every time step. The resulting rotation vector update is finite, while the derivative of the rotation vector in the singularity becomes unbounded. The advantages of this method are shown in an example of a gyro. Additionally, the method is applied to a multibody system and the effects of crossing singularities are presented.


Author(s):  
Olivier Bru¨ls ◽  
Martin Arnold ◽  
Alberto Cardona

This paper studies the formulation of the dynamics of multibody systems with large rotation variables and kinematic constraints as differential-algebraic equations on a matrix Lie group. Those equations can then be solved using a Lie group time integration method proposed in a previous work. The general structure of the equations of motion are derived from Hamilton principle in a general and unifying framework. Then, in the case of rigid body dynamics, two particular formulations are developed and compared from the viewpoint of the structure of the equations of motion, of the accuracy of the numerical solution obtained by time integration, and of the computational cost of the iteration matrix involved in the Newton iterations at each time step. In the first formulation, the equations of motion are described on a Lie group defined as the Cartesian product of the group of translations R3 (the Euclidean space) and the group of rotations SO(3) (the special group of 3 by 3 proper orthogonal transformations). In the second formulation, the equations of motion are described on the group of Euclidean transformations SE(3) (the group of 4 by 4 homogeneous transformations). Both formulations lead to a second-order accurate numerical solution. For an academic example, we show that the formulation on SE(3) offers the advantage of an almost constant iteration matrix.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1639
Author(s):  
Abdelkrim Aharmouch ◽  
Brahim Amaziane ◽  
Mustapha El Ossmani ◽  
Khadija Talali

We present a numerical framework for efficiently simulating seawater flow in coastal aquifers using a finite volume method. The mathematical model consists of coupled and nonlinear partial differential equations. Difficulties arise from the nonlinear structure of the system and the complexity of natural fields, which results in complex aquifer geometries and heterogeneity in the hydraulic parameters. When numerically solving such a model, due to the mentioned feature, attempts to explicitly perform the time integration result in an excessively restricted stability condition on time step. An implicit method, which calculates the flow dynamics at each time step, is needed to overcome the stability problem of the time integration and mass conservation. A fully implicit finite volume scheme is developed to discretize the coupled system that allows the use of much longer time steps than explicit schemes. We have developed and implemented this scheme in a new module in the context of the open source platform DuMu X . The accuracy and effectiveness of this new module are demonstrated through numerical investigation for simulating the displacement of the sharp interface between saltwater and freshwater in groundwater flow. Lastly, numerical results of a realistic test case are presented to prove the efficiency and the performance of the method.


2021 ◽  
Vol 11 (4) ◽  
pp. 1399
Author(s):  
Jure Oder ◽  
Cédric Flageul ◽  
Iztok Tiselj

In this paper, we present uncertainties of statistical quantities of direct numerical simulations (DNS) with small numerical errors. The uncertainties are analysed for channel flow and a flow separation case in a confined backward facing step (BFS) geometry. The infinite channel flow case has two homogeneous directions and this is usually exploited to speed-up the convergence of the results. As we show, such a procedure reduces statistical uncertainties of the results by up to an order of magnitude. This effect is strongest in the near wall regions. In the case of flow over a confined BFS, there are no such directions and thus very long integration times are required. The individual statistical quantities converge with the square root of time integration so, in order to improve the uncertainty by a factor of two, the simulation has to be prolonged by a factor of four. We provide an estimator that can be used to evaluate a priori the DNS relative statistical uncertainties from results obtained with a Reynolds Averaged Navier Stokes simulation. In the DNS, the estimator can be used to predict the averaging time and with it the simulation time required to achieve a certain relative statistical uncertainty of results. For accurate evaluation of averages and their uncertainties, it is not required to use every time step of the DNS. We observe that statistical uncertainty of the results is uninfluenced by reducing the number of samples to the point where the period between two consecutive samples measured in Courant–Friedrichss–Levy (CFL) condition units is below one. Nevertheless, crossing this limit, the estimates of uncertainties start to exhibit significant growth.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 785
Author(s):  
Arman Rokhzadi ◽  
Musandji Fuamba

This paper studies the air pressurization problem caused by a partially pressurized transient flow in a reservoir-pipe system. The purpose of this study is to analyze the performance of the rigid column model in predicting the attenuation of the air pressure distribution. In this regard, an analytic formula for the amplitude and frequency will be derived, in which the influential parameters, particularly, the driving pressure and the air and water lengths, on the damping can be seen. The direct effect of the driving pressure and inverse effect of the product of the air and water lengths on the damping will be numerically examined. In addition, these numerical observations will be examined by solving different test cases and by comparing to available experimental data to show that the rigid column model is able to predict the damping. However, due to simplified assumptions associated with the rigid column model, the energy dissipation, as well as the damping, is underestimated. In this regard, using the backward Euler implicit time integration scheme, instead of the classical fourth order explicit Runge–Kutta scheme, will be proposed so that the numerical dissipation of the backward Euler implicit scheme represents the physical dissipation. In addition, a formula will be derived to calculate the appropriate time step size, by which the dissipation of the heat transfer can be compensated.


2015 ◽  
Vol 784 ◽  
pp. 292-299 ◽  
Author(s):  
Stephan Wulfinghoff ◽  
Marek Fassin ◽  
Stefanie Reese

In this work, two time integration algorithms for the anisotropic damage model proposed by Lemaitre et al. (2000) are compared. Specifically, the standard implicit Euler scheme is compared to an algorithm which implicitly solves the elasto-plastic evolution equations and explicitly computes the damage update. To this end, a three dimensional bending example is solved using the finite element method and the results of the two algorithms are compared for different time step sizes.


2015 ◽  
Vol 143 (9) ◽  
pp. 3838-3855 ◽  
Author(s):  
Steven Sandbach ◽  
John Thuburn ◽  
Danail Vassilev ◽  
Michael G. Duda

Abstract An important question for atmospheric modeling is the viability of semi-implicit time integration schemes on massively parallel computing architectures. Semi-implicit schemes can provide increased stability and accuracy. However, they require the solution of an elliptic problem at each time step, creating concerns about their parallel efficiency and scalability. Here, a semi-implicit (SI) version of the Model for Prediction Across Scales (MPAS) is developed and compared with the original model version, which uses a split Runge–Kutta (SRK3) time integration scheme. The SI scheme is based on a quasi-Newton iteration toward a Crank–Nicolson scheme. Each Newton iteration requires the solution of a Helmholtz problem; here, the Helmholtz problem is derived, and its solution using a geometric multigrid method is described. On two standard test cases, a midlatitude baroclinic wave and a small-planet nonhydrostatic gravity wave, the SI and SRK3 versions produce almost identical results. On the baroclinic wave test, the SI version can use somewhat larger time steps (about 60%) than the SRK3 version before losing stability. The SI version costs 10%–20% more per step than the SRK3 version, and the weak and strong scalability characteristics of the two versions are very similar for the processor configurations the authors have been able to test (up to 1920 processors). Because of the spatial discretization of the pressure gradient in the lowest model layer, the SI version becomes unstable in the presence of realistic orography. Some further work will be needed to demonstrate the viability of the SI scheme in this case.


2021 ◽  
Author(s):  
Nicholas Keville-Reynolds Kevlahan ◽  
Florian Lemarié

Abstract. This paper introduces WAVETRISK-2.1 (i.e. WAVETRISK-OCEAN), an incompressible version of the atmosphere model wavetrisk-1.x with free-surface. This new model is built on the same wavelet-based dynamically adaptive core as wavetrisk, which itself uses DYNANICO's mimetic vector-invariant multilayer rotating shallow water formulation. Both codes use a Lagrangian vertical coordinate with conservative remapping. The ocean variant solves the incompressible multilayer shallow water equations with inhomogeneous density layers. Time integration uses barotropic--baroclinic mode splitting via an semi-implicit free surface formulation, which is about 34–44 times faster than an unsplit explicit time-stepping. The barotropic and baroclinic estimates of the free surface are reconciled at each time step using layer dilation. No slip boundary conditions at coastlines are approximated using volume penalization. The vertical eddy viscosity and diffusivity coefficients are computed from a closure model based on turbulent kinetic energy (TKE). Results are presented for a standard set of ocean model test cases adapted to the sphere (seamount, upwelling and baroclinic turbulence). An innovative feature of wavetrisk-ocean is that it could be coupled easily to the wavetrisk atmosphere model, thus providing a first building block toward an integrated Earth-system model using a consistent modelling framework with dynamic mesh adaptivity and mimetic properties.


10.14311/1829 ◽  
2013 ◽  
Vol 53 (4) ◽  
Author(s):  
Michal Kuráž ◽  
Petr Mayer

This paper presents several algorithms that were implemented in DRUtES [1], a new open source project. DRUtES is a finite element solver for coupled nonlinear parabolic problems, namely the Richards equation with the dual porosity approach (modeling the flow of liquids in a porous medium). Mass balance consistency is crucial in any hydrological balance and contaminant transportation evaluations. An incorrect approximation of the mass term greatly depreciates the results that are obtained. An algorithm for automatic time step selection is presented, as the proper time step length is crucial for achieving accuracy of the Euler time integration method. Various problems arise with poor conditioning of the Richards equation: the computational domain is clustered into subregions separated by a wetting front, and the nonlinear constitutive functions cover a high range of values, while a very simple diagonal preconditioning method greatly improves the matrix properties. The results are presented here, together with an analysis.


2013 ◽  
Vol 80 (2) ◽  
Author(s):  
Ali Akbar Gholampour ◽  
Mehdi Ghassemieh ◽  
Mahdi Karimi-Rad

A new time integration scheme is presented for solving the differential equation of motion with nonlinear stiffness. In this new implicit method, it is assumed that the acceleration varies quadratically within each time step. By increasing the order of acceleration, more terms of the Taylor series are used, which are expected to have responses with better accuracy than the classical methods. By considering this assumption and employing two parameters δ and α, a new family of unconditionally stable schemes is obtained. The order of accuracy, numerical dissipation, and numerical dispersion are used to measure the accuracy of the proposed method. Second order accuracy is achieved for all values of δ and α. The proposed method presents less dissipation at the lower modes in comparison with Newmark's average acceleration, Wilson-θ, and generalized-α methods. Moreover, this second order accurate method can control numerical damping in the higher modes. The numerical dispersion of the proposed method is compared with three unconditionally stable methods, namely, Newmark's average acceleration, Wilson-θ, and generalized-α methods. Furthermore, the overshooting effect of the proposed method is compared with these methods. By evaluating the computational time for analysis with similar time step duration, the proposed method is shown to be faster in comparison with the other methods.


Sign in / Sign up

Export Citation Format

Share Document