A Case of Relapsed Chromoblastomycosis Due to Fonsecaea monophora: Antifungal Susceptibility and Phylogenetic Analysis

2013 ◽  
Vol 176 (1-2) ◽  
pp. 139-144 ◽  
Author(s):  
Tatiane Caroline Daboit ◽  
Cibele Massotti Magagnin ◽  
Daiane Heidrich ◽  
Mauricio Ramírez Castrillón ◽  
Sandra Denise Camargo Mendes ◽  
...  
2009 ◽  
Vol 53 (10) ◽  
pp. 4514-4517 ◽  
Author(s):  
Laura Alcazar-Fuoli ◽  
Emilia Mellado ◽  
Ana Alastruey-Izquierdo ◽  
Manuel Cuenca-Estrella ◽  
Juan L. Rodriguez-Tudela

ABSTRACT A phylogenetic analysis was performed for 34 Aspergillus strains belonging to section Nigri. Molecular methods allowed for the correct classification into three different clades (A. niger, A. tubingensis, and A. foetidus). Correlation with in vitro itraconazole susceptibility distinguished the following three profiles: susceptible, resistant, and showing a paradoxical effect. A number of different species whose morphological features resemble those of A. niger showed unusual MICs to itraconazole that have never been described for the Aspergillus genus.


2021 ◽  
Vol 7 (5) ◽  
pp. 338
Author(s):  
Serisha D. Naicker ◽  
Rindidzani E. Magobo ◽  
Tsidiso G. Maphanga ◽  
Carolina Firacative ◽  
Erika van Schalkwyk ◽  
...  

In South Africa, Cryptococcus neoformans is the most common cause of adult meningitis. We performed multi locus sequence typing and fluconazole susceptibility testing of clinical C. neoformans isolates collected from 251 South African patients with cryptococcosis through national surveillance from 2005 to 2009. We examined the association between clinical characteristics of patients and genotype, and the effect of genotype on in-hospital mortality. We performed whole genome phylogenetic analysis of fifteen C. neoformans isolates with the molecular type VNB and tested their virulence in a Galleria mellonella model. Most isolates had the molecular type VNI (206/251, 82%), followed by VNII (25/251, 10%), VNB (15/251, 6%), and VNIV (5/251, 2%); 67 sequence types were identified. There were no differences in fluconazole minimum inhibitory concentration (MIC) values among molecular types and the majority of strains had low MIC values (MIC50 of 1 µg/mL and MIC90 of 4 µg/mL). Males were almost twice as likely of being infected with a non-VNI genotype (adjusted odds ratio [OR]: 1.65, 95% confidence interval [CI]: 0.25–10.99; p = 0.61). Compared to patients infected with a VNI genotype, those with a non-VNI genotype had a 50% reduced adjusted odds of dying in hospital (95% CI: 0.03–7.57; p = 0.62). However, for both these analyses, our estimates had wide confidence intervals spanning 1 with large p-values. Fifteen VNB strains were not as virulent in a G. mellonella larval model as the H99 reference strain. A majority of these VNB strains belonged to the VNBII clade and were very closely related by phylogenetic analysis.


2011 ◽  
Vol 172 (5) ◽  
pp. 373-380 ◽  
Author(s):  
Jiufeng Sun ◽  
Junmin Zhang ◽  
M. J. Najafzadeh ◽  
Hamid Badali ◽  
Xiqing Li ◽  
...  

2020 ◽  
Vol 141 ◽  
pp. 39-46
Author(s):  
MD Dorjievna Batueva ◽  
X Pan ◽  
J Zhang ◽  
X Liu ◽  
W Wei ◽  
...  

In the present study, we provide supplementary data for Myxidium cf. rhodei Léger, 1905 based on morphological, histological and molecular characterization. M. cf. rhodei was observed in the kidneys of 918 out of 942 (97%) roach Rutilus rutilus (Linnaeus, 1758). Myxospores of M. cf. rhodei were fusiform with pointed ends, measuring 12.7 ± 0.1 SD (11.8-13.4) µm in length and 4.6 ± 0.1 (3.8-5.4) µm in width. Two similar pear-shaped polar capsules were positioned at either ends of the longitudinal axis of the myxospore: each of these capsules measured 4.0 ± 0.1 (3.1-4.7) µm in length and 2.8 ± 0.1 (2.0-4.0) µm in width. Polar filaments were coiled into 4 to 5 turns. Approximately 18-20 longitudinal straight ridges were observed on the myxospore surface. The suture line was straight and distinctive, running near the middle of the valves. Histologically, the plasmodia of the present species were found in the Bowman’s capsules, and rarely in the interstitium of the host. Phylogenetic analysis revealed that M. cf. rhodei was sister to M. anatidum in the Myxidium clade including most Myxidium species from freshwater hosts.


2012 ◽  
Vol 3 (3) ◽  
pp. 302-304
Author(s):  
G. D.Sharma G. D.Sharma ◽  
◽  
* Dhritiman Chanda ◽  
D.K. Jha D.K. Jha

2020 ◽  
Vol 62 (1-2) ◽  
pp. 69-108
Author(s):  
S. Y. Kondratyuk ◽  
D. K. Upreti ◽  
G. K. Mishra ◽  
S. Nayaka ◽  
K. K. Ingle ◽  
...  

Eight species, new for science, i.e.: Lobothallia gangwondoana S. Y. Kondr., J.-J. Woo et J.-S. Hur and Phyllopsora dodongensis S. Y. Kondr. et J.-S. Hur from South Korea, Eastern Asia, Ioplaca rinodinoides S. Y. Kondr., K. K. Ingle, D. K. Upreti et S. Nayaka, Letrouitia assamana S. Y. Kondr., G. K. Mishra et D. K. Upreti, and Rusavskia indochinensis S. Y. Kondr., D. K. Upreti et S. Nayaka from India and China, South Asia, Caloplaca orloviana S. Y. Kondr. and Rusavskia drevlyanica S. Y. Kondr. et O. O. Orlov from Ukraine, Eastern Europe, as well as Xanthoria ibizaensis S. Y. Kondr. et A. S. Kondr. from Ibiza Island, Spain, Mediterranean Europe, are described, illustrated and compared with closely related taxa. Fominiella tenerifensis S. Y. Kondr., Kärnefelt, A. Thell et Feuerer is for the first time recorded from Mediterranean Europe, Huriella loekoesiana S. Y. Kondr. et Upreti is provided from Russia for the first time, and H. pohangensis S. Y. Kondr., L. Lőkös et J.-S. Hur for the first time from China, Phoma candelariellae Z. Kocakaya et Halıcı is new to Ukraine, and Staurothele frustulenta Vain. is recorded from the Forest Zone of Ukraine for the first time. Twelve new combinations, i.e.: Bryostigma apotheciorum (for Sphaeria apotheciorum A. Massal.), Bryostigma biatoricola (for Arthonia biatoricola Ihlen et Owe-Larss.), Bryostigma dokdoense (for Arthonia dokdoensis S. Y. Kondr., L. Lőkös, B. G. Lee, J.-J. Woo et J.-S. Hur), Bryostigma epiphyscium (for Arthonia epiphyscia Nyl.), Bryostigma lobariellae (for Arthonia lobariellae Etayo), Bryostigma lapidicola (for Lecidea lapidicola Taylor), Bryostigma molendoi (for Tichothecium molendoi Heufl. ex Arnold), Bryostigma neglectulum (for Arthonia neglectula Nyl.), Bryostigma parietinarium (for Arthonia parietinaria Hafellner et Fleischhacker), Bryostigma peltigerinum (for Arthonia vagans var. peltigerina Almq.), Bryostigma phaeophysciae (for Arthonia phaeophysciae Grube et Matzer), Bryostigma stereocaulinum (for Arthonia nephromiaria var. stereocaulina Ohlert), are proposed based on results of combined phylogenetic analysis based on mtSSU and RPB2 gene sequences. Thirty-one new combinations for members of the genus Polyozosia (i.e.: Polyozosia actophila (for Lecanora actophila Wedd.), Polyozosia agardhiana (for Lecanora agardhiana Ach.), Polyozosia altunica (for Myriolecis altunica R. Mamut et A. Abbas), Polyozosia antiqua (for Lecanora antiqua J. R. Laundon), Polyozosia bandolensis (for Lecanora bandolensis B. de Lesd.), Polyozosia behringii (for Lecanora behringii Nyl.), Polyozosia caesioalutacea (for Lecanora caesioalutacea H. Magn.), Polyozosia carlottiana (for Lecanora carlottiana C. J. Lewis et Śliwa), Polyozosia congesta (for Lecanora congesta Clauzade et Vězda), Polyozosia eurycarpa (for Lecanora eurycarpa Poelt, Leuckert et Cl. Roux), Polyozosia expectans (Lecanora expectans Darb.), Polyozosia flowersiana (Lecanora flowersiana H. Magn.), Polyozosia fugiens (for Lecanora fugiens Nyl.), Polyozosia invadens (for Lecanora invadens H. Magn.), Polyozosia juniperina (for Lecanora juniperina Śliwa), Polyozosia latzelii (for Lecanora latzelii Zahlbr.), Polyozosia liguriensis (for Lecanora liguriensis B. de Lesd.), Polyozosia massei (for Myriolecis massei M. Bertrand et J.-Y. Monnat), Polyozosia mons-nivis (for Lecanora mons-nivis Darb.), Polyozosia oyensis (for Lecanora oyensis M.-P. Bertrand et Cl. Roux), Polyozosia percrenata (for Lecanora percrenata H. Magn.), Polyozosia persimilis (for Lecanora hagenii subsp. persimilis Th. Fr.), Polyozosia poeltiana (for Lecanora poeltiana Clauzade et Cl. Roux), Polyozosia prominens (for Lecanora prominens Clauzade et Vězda), Polyozosia prophetae-eliae (for Lecanora prophetae-eliae Sipman), Polyozosia salina (for Lecanora salina H. Magn.), Polyozosia schofieldii (for Lecanora schofieldii Brodo), Polyozosia sverdrupiana (for Lecanora sverdrupiana Øvstedal), Polyozosia torrida (for Lecanora torrida Vain.), Polyozosia wetmorei (for Lecanora wetmorei Śliwa), Polyozosia zosterae (for Lecanora subfusca? zosterae Ach.)) are proposed.


2020 ◽  
Vol 40 (10) ◽  
pp. 818-823
Author(s):  
Juliana F.V. Braga ◽  
Rodrigo M. Couto ◽  
Marcelo C. Rodrigues ◽  
Roselene Ecco

ABSTRACT: Avipoxvirus is the etiological agent of the avian pox, a well-known disease of captive and wild birds, and it has been associated with tumor-like lesions in some avian species. A white-faced whistling duck (Dendrocygna viduata) raised in captivity was referred to a Veterinary Teaching Hospital in Northeast due to cutaneous nodules present in both wings. A few days after the clinical examination, the animal died naturally. Once submitted to necropsy, histopathological evaluation of the lesions revealed clusters of proliferating epithelial cells expanding toward the dermis. Some of these cells had round, well-defined, intracytoplasmic eosinophilic material suggestive of poxvirus inclusion (Bollinger bodies). PCR performed on the DNA extracted from tissue samples amplified a fragment of the 4b core protein gene (fpv167), which was purified and sequenced. This fragment of Avipoxvirus DNA present in these tumor-like lesions showed high genetic homology (100.0%) with other poxviruses detected in different avian species in several countries, but none of them were related to tumor-like lesions or squamous cell carcinoma. This is the first report of Avipoxvirus detected in tumor-like lesions of a white-faced whistling duck with phylogenetic analysis of the virus.


Sign in / Sign up

Export Citation Format

Share Document