Growth kinetics and long-term stability of CdS nanoparticles in aqueous solution under ambient conditions

2010 ◽  
Vol 13 (1) ◽  
pp. 393-404 ◽  
Author(s):  
Katherine M. Mullaugh ◽  
George W. Luther
Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1808
Author(s):  
Yali Zhou ◽  
Zhenyao Han ◽  
Chunlin He ◽  
Qin Feng ◽  
Kaituo Wang ◽  
...  

Nanobubbles have many potential applications depending on their types. The long-term stability of different gas nanobubbles is necessary to be studied considering their applications. In the present study, five kinds of nanobubbles (N2, O2, Ar + 8%H2, air and CO2) in deionized water and a salt aqueous solution were prepared by the hydrodynamic cavitation method. The mean size and zeta potential of the nanobubbles were measured by a light scattering system, while the pH and Eh of the nanobubble suspensions were measured as a function of time. The nanobubble stability was predicted and discussed by the total potential energies between two bubbles by the extended Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. The nanobubbles, except CO2, in deionized water showed a long-term stability for 60 days, while they were not stable in the 1 mM (milli mol/L) salt aqueous solution. During the 60 days, the bubble size gradually increased and decreased in deionized water. This size change was discussed by the Ostwald ripening effect coupled with the bubble interaction evaluated by the extended DLVO theory. On the other hand, CO2 nanobubbles in deionized water were not stable and disappeared after 5 days, while the CO2 nanobubbles in 1 mM of NaCl and CaCl2 aqueous solution became stable for 2 weeks. The floating and disappearing phenomena of nanobubbles were estimated and discussed by calculating the relationship between the terminal velocity of the floating bubble and bubble size.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Nam-Kwang Cho ◽  
Hyun-Jae Na ◽  
Jeeyoung Yoo ◽  
Youn Sang Kim

AbstractBlack-colored (α, γ-phase) CsPbI3 perovskites have a small bandgap and excellent absorption properties in the visible light regime, making them attractive for solar cells. However, their long-term stability in ambient conditions is limited. Here, we demonstrate a strategy to improve structural and electrical long-term stability in γ-CsPbI3 by the use of an ultraviolet-curable polyethylene glycol dimethacrylate (PEGDMA) polymer network. Oxygen lone pair electrons from the PEGDMA are found to capture Cs+ and Pb2+ cations, improving crystal growth of γ-CsPbI3 around PEGDMA. In addition, the PEGDMA polymer network strongly contributes to maintaining the black phase of γ-CsPbI3 for more than 35 days in air, and an optimized perovskite film retained ~90% of its initial electrical properties under red, green, and blue light irradiation.


1998 ◽  
Vol 510 ◽  
Author(s):  
Jing xi Sun ◽  
F. J. Himpsel ◽  
T. F. Kuech

AbstractSelenium disulfide surface treatment can unpin the surface Fermi-level on n-GaAs (100) surfaces, resulting in a reduction in the surface band bending. The long-term stability of the surface Fermi-level unpinning has been studied using photoreflectance spectroscopy under room ambient conditions. Our results show that the SeS2-treated n-GaAs (100) surface is stable up to four months with negligible shift in the surface Fermi-level being noted. The mechanism of the long-term stability is attributed to the layered surface structure formed on the SeS2-treated n- GaAs (100) surface. The chemical structure of the passivated surface was determined by synchrotron radiation photoemission spectroscopy. The outermost layer of sulfur and arsenicbased sulfides and selenides may protect the electronic passivating layer, which consists of gallium-based selenides, from interaction with the atmosphere.


2020 ◽  
Author(s):  
Kate Higgins ◽  
Sai Mani Valleti ◽  
Maxim Ziatdinov ◽  
Sergei Kalinin ◽  
Mahshid Ahmadi

<p></p><p>Hybrid organic-inorganic perovskites have attracted immense interest as a promising material for a variety of optoelectronic and sensing applications. However, issues regarding long-term stability have emerged as the key bottleneck for applications and still require further study. Here, we develop automated experimental workflow based on combinatorial synthesis and rapid throughput characterization to explore long-term stability of these materials in ambient conditions, and apply it to four model perovskite systems: <a></a><a>MA<i><sub>x</sub></i>FA<i><sub>y</sub></i>Cs<sub>1-<i>x</i>-<i>y</i></sub>PbBr<sub>3</sub>, MA<i><sub>x</sub></i>FA<i><sub>y</sub></i>Cs<sub>1-<i>x</i>-<i>y</i></sub>PbI<sub>3</sub>, Cs<i><sub>x</sub></i>FA<i><sub>y</sub></i>MA<sub>1-<i>x</i>-<i>y</i></sub>Pb(Br<i><sub>x</sub></i><sub>+<i>y</i></sub>I<sub>1-<i>x</i>-<i>y</i></sub>)<sub>3</sub> and Cs<i><sub>x</sub></i>MA<i><sub>y</sub></i>FA<sub>1-<i>x</i>-<i>y</i></sub>Pb(I<i><sub>x</sub></i><sub>+<i>y</i></sub>Br<sub>1-<i>x</i>-<i>y</i></sub>)<sub>3</sub></a>. We have both established a new workflow and found out the main tendencies in the mixed cation and anion systems, which led to the discovery of non-trivial composition regions with high stability. The Non-negative Matrix Factorization and Gaussian Process regression are used <i>to</i> <i>interpolate the photoluminescent behavior of vast compositional space</i> and <i>to study the overall behavior of the phase diagram</i>. This interpolative regression analysis helps to distinguish mixtures that form solid solutions from those that segregate into multiple materials, pointing out the most stable regions of the phase diagram. We find the stability dependence on composition to be extremely non-uniform within the composition space, suggesting the presence of potential preferential compositional regions. <a>This proposed workflow is universal and can be applied to other perovskite systems and solution-processable materials. </a>Furthermore, incorporation of experimental optimization methods, e.g., those based on Gaussian Processes, will enable the transition from combinatorial synthesis to guide materials research and optimization.</p><p></p>


2020 ◽  
Author(s):  
Kate Higgins ◽  
Sai Mani Valleti ◽  
Maxim Ziatdinov ◽  
Sergei Kalinin ◽  
Mahshid Ahmadi

<p>Hybrid organic-inorganic perovskites have attracted immense interest as a promising material for the next-generation solar cells; however, issues regarding long-term stability still require further study. Here, we develop automated experimental workflow based on combinatorial synthesis and rapid throughput characterization to explore long-term stability of these materials in ambient conditions, and apply it to four model perovskite systems: MA<sub>x</sub>FA<sub>y</sub>Cs<sub>1-x-y</sub>PbBr<sub>3</sub>, MA<sub>x</sub>FA<sub>y</sub>Cs<sub>1-x-y</sub>PbI<sub>3</sub>, (Cs<sub>x</sub>FA<sub>y</sub>MA<sub>1-x-y</sub>Pb(Br<sub>x+y</sub>I<sub>1-x-y</sub>)<sub>3</sub>) and (Cs<sub>x</sub>MA<sub>y</sub>FA<sub>1-x-y</sub>Pb(I<sub>x+y</sub>Br<sub>1-x-y</sub>)<sub>3</sub>). We also develop a machine learning-based workflow to quantify the evolution of each system as a function of composition based on overall changes in photoluminescence spectra, as well as specific peak positions and intensities. We find the stability dependence on composition to be extremely non-uniform within the composition space, suggesting the presence of potential preferential compositional regions. This proposed workflow is universal and can be applied to other perovskite systems and solution-processable materials. Furthermore, incorporation of experimental optimization methods, e.g., those based on Gaussian Processes, will enable the transition from combinatorial synthesis to guide materials research and optimization.</p>


RSC Advances ◽  
2016 ◽  
Vol 6 (15) ◽  
pp. 12311-12314 ◽  
Author(s):  
Yongyun Mao ◽  
Yuwen Yang ◽  
Hongwei Yang ◽  
Jiao Han ◽  
Yiming Zeng ◽  
...  

Novel hierarchical multipods silver citrate complexes (SCC) microcrystals have been successfully synthesized in aqueous solution for the first time. The multipods SCC microcrystals showed excellent performance and long-term-stability as SERS substrate.


2020 ◽  
Vol 274 ◽  
pp. 128041 ◽  
Author(s):  
Zu-an Guo ◽  
Bowen Zhang ◽  
Hongyuan Li ◽  
Huangliang Ming ◽  
Hari Bala ◽  
...  

Langmuir ◽  
2018 ◽  
Vol 35 (3) ◽  
pp. 718-728 ◽  
Author(s):  
Jing Qian ◽  
Vincent S. J. Craig ◽  
Marie Jehannin

Contraception ◽  
1992 ◽  
Vol 46 (2) ◽  
pp. 139 ◽  
Author(s):  
Qiming Xia ◽  
Shaobo Xiao ◽  
Miaomiao Liu

Sign in / Sign up

Export Citation Format

Share Document