Expression of Rhizobium tropici phytochelatin synthase in Escherichia coli resulted in increased bacterial selenium nanoparticle synthesis

2020 ◽  
Vol 22 (12) ◽  
Author(s):  
Qunying Yuan ◽  
Manjula Bomma ◽  
Haley Hill ◽  
Zhigang Xiao
Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 472
Author(s):  
Qunying Yuan ◽  
Manjula Bomma ◽  
Zhigang Xiao

Phytochelatins, the enzymatic products of phytochelatin synthase, play a principal role in protecting the plants from heavy metal and metalloid toxicity due to their ability to scavenge metal ions. In the present study, we investigated the capacity of soluble intracellular extracts from E. coli cells expressing R. tropici phytochelatin synthase to synthesize gold nanoparticle. We discovered that the reaction mediated by soluble extracts from the recombinant E. coli cells had a higher yield of gold nanoparticles, compared to that from the control cells. The compositional and morphological properties of the gold nanoparticles synthesized by the intracellular extracts from recombinant cells and control cells were similar. In addition, this extracellular nanoparticle synthesis method produced purer gold nanoparticles, avoiding the isolation of nanoparticles from cellular debris when whole cells are used to synthesize nanoparticles. Our results suggested that phytochelatins can improve the efficiency of gold nanoparticle synthesis mediated by bacterial soluble intracellular extracts, and the potential of extracellular nanoparticle synthesis platform for the production of nanoparticles in large quantity and pure form is worth further investigation.


2018 ◽  
Vol 20 (1) ◽  
pp. 8-15 ◽  
Author(s):  
Shanti Ratnakomala ◽  
Nurul Fitri Sari ◽  
Fahrurrozi Fahrurrozi ◽  
Puspita Lisdiyanti

AbstractA total of 98 actinomycetes were isolated from the soil and litter samples collected from the cacao and coffee plantation in Lombok Island, West Nusa Tenggara, Indonesia. These isolates were screened for their antimicrobial activity. Among 98 isolated strains, only 24 isolates showed antimicrobial activity against test microorganisms of which 20.4% were active against Bacillus subtilis BTCC B-612, 14.3% against Staphylococcus aureus BTCC B-611, and 5.1% against Escherichia coli BTCC B-609. Out of these 24 isolates, 3 were found to be able to grow in medium containing 3 mM Selenium oxide of which the culture were changed color to red. Two of the best strains, L-155 and L-156, were selected for assessing production of Selenium nanoparticles. Bioreduction of selenium nanoparticles was confirmed by UV–visible spectrophotometer which showed peak between 300 and 320 nm. Biosynthesized selenium nanoparticle from isolate actinomycetes L-155 and L-156 were found to have a broad spectrum of activity against the tested microorganisms: Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Micrococcus luteus, and Candida albicans. This study showed rapid and eco-friendly synthesis of selenium nanoparticles from soil actinomycetes. Most of these active isolates revealed to possess antibacterial property.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4180 ◽  
Author(s):  
Qunying Yuan ◽  
Manjula Bomma ◽  
Zhigang Xiao

In this study, the metallothionein gene of Candida albicans (C. albicans) was assembled by polymerase chain reaction (PCR), inserted into pUC19 vector, and further transformed into Escherichia coli (E. coli) DH5α cells. The capacity of these recombinant E. coli DH5α cells to synthesize silver nanoparticles was examined. Our results demonstrated that the expression of C. albicans metallothionein in E. coli promoted the bacterial tolerance to metal ions and increased yield of silver nanoparticle synthesis. The compositional and morphological analysis of the silver nanoparticles revealed that silver nanoparticles synthesized by the engineered E. coli cells are around 20 nm in size, and spherical in shape. Importantly, the silver nanoparticles produced by the engineered cells were more homogeneous in shape and size than those produced by bacteria lack of the C. albicans metallothionein. Our study provided preliminary information for further development of the engineered E. coli as a platform for large-scale production of uniform nanoparticles for various applications in nanotechnology.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ngoc Hoi Nguyen ◽  
Tran Thi Yen Nhi ◽  
Ngo Thi Van Nhi ◽  
Tran Thi Thu Cuc ◽  
Pham Minh Tuan ◽  
...  

Piper betle (P. betle) and Piper sarmentosum (P. sarmentosum) are the two members of the Piper genus, have been reported to be rich in phytochemicals and essential oils, which showed strong reducing power, antibacterial, and antifungal activities. P. betle recently has been studied and applied in several commercial products in the antimicrobial respect, meanwhile its relatives, P. sarmentosum has been lesser-known in this field. In this study, the two Piper species—P. betle and P. sarmentosum were studied to compare their ability in silver nanoparticle synthesis and efficacy in antibacterial activity. P. betle and P. sarmentosum were extracted by distilled water at different temperatures and times. Subsequently, their total reducing capacity was determined by DPPH scavenging and Folin-Ciocalteu assays to choose the appropriate extraction conditions. The silver nanoparticle solutions prepared by the extracts of P. betle (Pb.ext) and P. sarmentosum (Ps.ext) were characterized by Dynamic light scattering (DLS), Zeta potential, UV-vis, and Fourier-transform infrared (FTIR) measurements. Finally, the antibacterial activity of the synthesized silver nanoparticle solutions was tested against Escherichia coli using the agar diffusion well–variant method. The Pb.ext showed stronger reducing power with higher total polyphenol content (~125 mg GAE/mL extract) and better DPPH activity (IC50~1.45%). Both the green synthesized silver nanoparticle solutions (Pb.AgNP and Ps.AgNP) performed significantly stronger antibacterial activity on Escherichia coli compared to their initial extracts. Antibacterial tests revealed that Ps.AgNP showed remarkably better growth inhibition activity as compared to Pb.AgNP. This study would contribute useful and important information to the development of antibacterial products based on green synthesized silver nanoparticles fabricated by the extracts of P. betle and P. sarmentosum.


Sign in / Sign up

Export Citation Format

Share Document