scholarly journals Enhanced Silver Nanoparticle Synthesis by Escherichia Coli Transformed with Candida Albicans Metallothionein Gene

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4180 ◽  
Author(s):  
Qunying Yuan ◽  
Manjula Bomma ◽  
Zhigang Xiao

In this study, the metallothionein gene of Candida albicans (C. albicans) was assembled by polymerase chain reaction (PCR), inserted into pUC19 vector, and further transformed into Escherichia coli (E. coli) DH5α cells. The capacity of these recombinant E. coli DH5α cells to synthesize silver nanoparticles was examined. Our results demonstrated that the expression of C. albicans metallothionein in E. coli promoted the bacterial tolerance to metal ions and increased yield of silver nanoparticle synthesis. The compositional and morphological analysis of the silver nanoparticles revealed that silver nanoparticles synthesized by the engineered E. coli cells are around 20 nm in size, and spherical in shape. Importantly, the silver nanoparticles produced by the engineered cells were more homogeneous in shape and size than those produced by bacteria lack of the C. albicans metallothionein. Our study provided preliminary information for further development of the engineered E. coli as a platform for large-scale production of uniform nanoparticles for various applications in nanotechnology.

2021 ◽  
Vol 13 (1) ◽  
pp. 283-297
Author(s):  
S. Shukla ◽  
D. Mishra

Since the advent of vaccines, the mankind has benefited from the same and has been able to curb the mortality rate around the globe. Amongst different types of available vaccines, polysaccharide based vaccines are very widely used against various infectious diseases. The polysaccharide vaccines need to be conjugated with a carrier protein to make the vaccine more immunogenic. Recombinant Escherichia coli cells are the organism of choice for large scale production of a carrier protein because of its widely studied scientific aspects. In the present study, for proof of concept, the recombinant E. coli cells were cultured in Luria-Bertani media to check the expression of rCRM197. At 80L scale, it was observed that when recombinant E. coli cells were grown in a chemically defined media, it resulted in inconsistent growth and a long lag phase. When the defined media was supplemented with yeast extract, the lag phase of the culture was substantially reduced and the maximum growth of the culture was achieved. Protein expression was checked using SDS PAGE (Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis) and Western blot technique. The optimized media resulted in a robust fermentation process to achieve high cell density and maximum biomass for the production of recombinant protein.


Author(s):  
Amir Hossein Momen ◽  
Naser Harzandi ◽  
Azam Haddadi ◽  
Bijan Bambai

Abstract Background Increasing the expression rate of recombinant mammalian hormones in Escherichia coli by combining efficient promoters and signal sequences is a never ending process. A self-induced promoter will have some beneficial gains compared to the classical T7 promoter or its variants with isopropyl β-D-1-thiogalactopyranoside (IPTG) as the inducer. Obesity is the prime suspect in widespread frequency of diabetes type II and cardiovascular diseases worldwide. YY (tyrosine-tyrosine) peptide is a local acting hormone, controlling appetite. Excitingly, it was has been shown that a truncated version of the YY peptide, YY(3-36) peptide, has potential as a worthy biopharmaceutical agent in the fight against obesity. Materials and methods To develop an economical expression system for the large scale production of the peptide in Gram-negative bacteria, we introduced a promoter sequence upstream of a chimeric gene for the extracellular expression of this peptide with the assistance of a signal sequence of asparaginase II from E. coli. This system has the advantage of producing a complete sequence of a truncated YY peptide, YY(3-36), without any extra tags that would require further removal with the assistance of expensive specific proteases and reduced the downstream steps, significantly. Results Recombinant production of YY(3-36) peptide under a self-induced promoter proves the efficacy of the asparaginase II signal sequence as a communicator of foreign peptides and proteins into the extracellular space of E. coli. Conclusions The application of fusion protein expression of biopharmaceuticals, especially mammalian hormones, in prokaryotic systems with the help of native signal sequences makes some common tags with expensive proteases for the removal of the attached protein Tag redundant.


RSC Advances ◽  
2016 ◽  
Vol 6 (90) ◽  
pp. 87128-87133 ◽  
Author(s):  
Tatiana Yu. Sergeeva ◽  
Aida I. Samigullina ◽  
Aidar T. Gubaidullin ◽  
Irek R. Nizameev ◽  
Marsil K. Kadirov ◽  
...  

An amphiphilic resorcinarene with ferrocene groups at the lower rim has been applied as both reductant and stabilizer in the synthesis of colloidal silver nanoparticles.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ngoc Hoi Nguyen ◽  
Tran Thi Yen Nhi ◽  
Ngo Thi Van Nhi ◽  
Tran Thi Thu Cuc ◽  
Pham Minh Tuan ◽  
...  

Piper betle (P. betle) and Piper sarmentosum (P. sarmentosum) are the two members of the Piper genus, have been reported to be rich in phytochemicals and essential oils, which showed strong reducing power, antibacterial, and antifungal activities. P. betle recently has been studied and applied in several commercial products in the antimicrobial respect, meanwhile its relatives, P. sarmentosum has been lesser-known in this field. In this study, the two Piper species—P. betle and P. sarmentosum were studied to compare their ability in silver nanoparticle synthesis and efficacy in antibacterial activity. P. betle and P. sarmentosum were extracted by distilled water at different temperatures and times. Subsequently, their total reducing capacity was determined by DPPH scavenging and Folin-Ciocalteu assays to choose the appropriate extraction conditions. The silver nanoparticle solutions prepared by the extracts of P. betle (Pb.ext) and P. sarmentosum (Ps.ext) were characterized by Dynamic light scattering (DLS), Zeta potential, UV-vis, and Fourier-transform infrared (FTIR) measurements. Finally, the antibacterial activity of the synthesized silver nanoparticle solutions was tested against Escherichia coli using the agar diffusion well–variant method. The Pb.ext showed stronger reducing power with higher total polyphenol content (~125 mg GAE/mL extract) and better DPPH activity (IC50~1.45%). Both the green synthesized silver nanoparticle solutions (Pb.AgNP and Ps.AgNP) performed significantly stronger antibacterial activity on Escherichia coli compared to their initial extracts. Antibacterial tests revealed that Ps.AgNP showed remarkably better growth inhibition activity as compared to Pb.AgNP. This study would contribute useful and important information to the development of antibacterial products based on green synthesized silver nanoparticles fabricated by the extracts of P. betle and P. sarmentosum.


Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 82 ◽  
Author(s):  
Jungyeon Kim ◽  
Yu Cheong ◽  
Inho Jung ◽  
Kyoung Kim

L-Fucose, one of the major monomeric sugars in brown algae, possesses high potential for use in the large-scale production of bio-based products. Although fucose catabolic pathways have been enzymatically evaluated, the effects of fucose as a carbon source on intracellular metabolism in industrial microorganisms such as Escherichia coli are still not identified. To elucidate the effects of fucose on cellular metabolism and to find clues for efficient conversion of fucose into bio-based products, comparative metabolomic and transcriptomic analyses were performed on E. coli on L-fucose and on D-glucose as a control. When fucose was the carbon source for E. coli, integration of the two omics analyses revealed that excess gluconeogenesis and quorum sensing led to severe depletion of ATP, resulting in accumulation and export of fucose extracellularly. Therefore, metabolic engineering and optimization are needed for E. coil to more efficiently ferment fucose. This is the first multi-omics study investigating the effects of fucose on cellular metabolism in E. coli. These omics data and their biological interpretation could be used to assist metabolic engineering of E. coli producing bio-based products using fucose-containing brown macroalgae.


Author(s):  
Abdelmageed M. Othman ◽  
Maysa A. Elsayed ◽  
Naser G. Al-Balakocy ◽  
Mohamed M. Hassan ◽  
Ali M. Elshafei

Abstract Background The present study aims to apply an efficient eco-friendly and inexpensive process for green synthesis of silver nanoparticles (AgNPs) through the mediation of fungal proteins from Aspergillus fumigatus DSM819, characterization, and its application as antimicrobial finishing agent in textile fabrics against some infectious microorganisms. Results Optimum conditions for AgNP biosynthesis could be achieved by means of using 60% (v/v) of cell-free filtrate (CFF) and 1.5 mM of AgNO3 at pH 10.0 after 90 min. The obtained AgNPs were of spherical shape with 90% of distribution below than 84.4 nm. The biosynthesized AgNPs exerted an antimicrobial activity against the studied pathogenic microorganisms (E. coli, B. mycoides, and C. albicans). In addition, IC50 values against in vitro tumor cell lines were found to be 31.1, 45.4, 40.9, and 33.5 μg/ml for HCT116, A549, MCF7, and PC3, respectively. Even with a very low concentration (0.25%), the treated PET/C fabrics by AgNPs exerted an antimicrobial activity against E. coli, B. mycoides, and C. albicans to give inhibition zone diameter of 15, 15, and 16 mm, respectively. Conclusions The green biosynthesis approach applied in this study is a non-toxic alternative to the traditional chemical and physical methods, and would be appropriate for biological large-scale production and prospective treatments. Graphical abstract


2018 ◽  
Vol 38 (3) ◽  
pp. 127-149 ◽  
Author(s):  
Shaan Bibi Jaffri ◽  
Khuram Shahzad Ahmad

AbstractVariegated physicochemical routes with emerging modifications have been adopted and reported for silver nanoparticle synthesis for centuries. Nano-biotechnology aimed at the synthesis of nanomaterials, including silver nanoparticles, through utilization of biological media has acquired an auspicious role in science for human welfare. Despite recurrent nanoscale researches on physicochemical routes, coeval stages are predominated by greener methods in silver nanoparticle synthesis for the utilization of its inherent toxicity and exceedingly smaller sizes for biological and environmental applications. One of the principles of green routes for silver nanoparticle synthesis is reduction and stabilization via phytochemicals extracted from plants in a one-pot protocol of phytofunctionalization. Plants are preferred for their abundant availability, environmental non-toxicity and economical favorability and chiefly for the ease of aptness, unlike microbial pathways having tedious requirements of cellular culture maintenance conditions. The present work reviewed the most recent milestones set in the selection of types and parts of plants and optimized synthetic conditions employed in the fabrication of silver nanoparticles, in addition to quantitative and qualitative characterization. Furthermore, the use of phytofunctionalized silver nanoparticles for microbial growth inhibition and environmental remediation was also studied. Through the meticulous review of literature, potential applications were highlighted, which can provide researchers with a plethora of avenues for future investigations for remediation of the environment, in terms of both combating pathogenic microbes and environmental detoxification.


Author(s):  
Umadevi M ◽  
Rani T ◽  
Balakrishnan T ◽  
Ramanibai R

Nanotechnology has great promise for improving the therapeutic potential of medicinal molecules and related agents. In this study, silver nanoparticles of different sizes were synthesized in an ultrasonic field using the chemical reduction method with sodium borohydride as a reducing agent. The size effect of silver nanoparticles on antimicrobial activity were tested against the microorganisms Staphylococcus aureus (MTCC No. 96), Bacillus subtilis (MTCC No. 441), Streptococcus mutans (MTCC No. 497), Escherichia coli (MTCC No. 739) and Pseudomonas aeruginosa (MTCC No. 1934). The results shows that B. subtilis, and E. coli were more sensitive to silver nanoparticles and its size, indicating the superior antimicrobial efficacy of silver nanoparticles. 


2020 ◽  
Vol 24 (19) ◽  
pp. 2272-2282
Author(s):  
Vu Ngoc Toan ◽  
Nguyen Minh Tri ◽  
Nguyen Dinh Thanh

Several 6- and 7-alkoxy-2-oxo-2H-chromene-4-carbaldehydes were prepared from corresponding alkyl ethers of 6- and 7-hydroxy-4-methyl-2-oxo-2H-chromen-2-ones by oxidation using selenium dioxide. 6- and 7-Alkoxy-4-methyl-2H-chromenes were obtained with yields of 57-85%. Corresponding 4-carbaldehyde derivatives were prepared with yields of 41-67%. Thiosemicarbazones of these aldehydes with D-galactose moiety were synthesized by reaction of these aldehydes with N-(2,3,4,6-tetra-O-acetyl-β-Dgalactopyranosyl) thiosemicarbazide with yields of 62-74%. These thiosemicarbazones were screened for their antibacterial and antifungal activities in vitro against bacteria, such as Staphylococcus aureus, Escherichia coli, and fungi, such as Aspergillus niger, Candida albicans. Several compounds exhibited strong inhibitory activity with MIC values of 0.78- 1.56 μM, including 8a (against S. aureus, E. coli, and C. albicans), 8d (against E. coli and A. niger), 9a (against S. aureus), and 9c (against S. aureus and C. albicans).


2021 ◽  
Vol 9 (2) ◽  
pp. 310
Author(s):  
Masayuki Hashimoto ◽  
Yi-Fen Ma ◽  
Sin-Tian Wang ◽  
Chang-Shi Chen ◽  
Ching-Hao Teng

Uropathogenic Escherichia coli (UPEC) is a major bacterial pathogen that causes urinary tract infections (UTIs). The mouse is an available UTI model for studying the pathogenicity; however, Caenorhabditis elegans represents as an alternative surrogate host with the capacity for high-throughput analysis. Then, we established a simple assay for a UPEC infection model with C. elegans for large-scale screening. A total of 133 clinically isolated E. coli strains, which included UTI-associated and fecal isolates, were applied to demonstrate the simple pathogenicity assay. From the screening, several virulence factors (VFs) involved with iron acquisition (chuA, fyuA, and irp2) were significantly associated with high pathogenicity. We then evaluated whether the VFs in UPEC were involved in the pathogenicity. Mutants of E. coli UTI89 with defective iron acquisition systems were applied to a solid killing assay with C. elegans. As a result, the survival rate of C. elegans fed with the mutants significantly increased compared to when fed with the parent strain. The results demonstrated, the simple assay with C. elegans was useful as a UPEC infectious model. To our knowledge, this is the first report of the involvement of iron acquisition in the pathogenicity of UPEC in a C. elegans model.


Sign in / Sign up

Export Citation Format

Share Document