Root distribution, orientation and root length density modelling in Eucalyptus and evaluation of associated water use efficiency

New Forests ◽  
2020 ◽  
Vol 51 (6) ◽  
pp. 1023-1037
Author(s):  
Romeet Saha ◽  
Harish Singh Ginwal ◽  
Girish Chandra ◽  
Santan Barthwal
1997 ◽  
Vol 48 (2) ◽  
pp. 241 ◽  
Author(s):  
M. Lotfollahi ◽  
A. M. Alston ◽  
G. K. McDonald

Two experiments were conducted in pots 105 cm deep and 11 cm in diameter to determine the effects of subsoil nitrogen (N) on grain yield and grain protein concentration (GPC) of wheat (Triticum aestivum L. cv. Molineux). In both experiments, KNO3 was applied in solution at different times and depths in the profile. In the first experiment, in which a sandy soil low in available N was used, application of 150 mg N at 60 cm, 2 weeks after anthesis, significantly increased grain yield and GPC. The N was taken up gradually by the plant after N was applied. Adding N to the subsoil increased root growth and this resulted in increased water use and water use efficiency. Although there was an increase in the rate of N uptake by the roots, the main factor that influenced the utilisation of subsoil N was the root length density. In the second experiment, the effects of depth and time of N application, and of a reduction in post-anthesis water supply, were determined. A more fertile soil was used than the one in the first experiment. There were 5 KNO3 treatments: nil N; 150 mg N applied to the topsoil at sowing; 75 mg N to the topsoil and 75 mg N to the subsoil (60 cm depth) at sowing; 150 mg N to the subsoil at sowing; 75 mg N to the topsoil at sowing and 75 mg N to the subsoil 1 week after anthesis. The effect of post-anthesis water stress was assessed by allowing the topsoil to dry and then supplying half the amount of water used by the well-watered control treatment at 60 cm in half of the pots. Adding N increased yield and GPC but there was no significant difference in yield and GPC between the different N treatments. When N was applied to the topsoil only, most of it was used by the wheat plants or leached to the subsoil by anthesis; post-anthesis uptake of N depended on the amount of N in the subsoil. Adding N, irrespective of the depth of placement or time of application, increased water use and water use efficiency. In both experiments, increasing the availability of N in the soil after anthesis reduced the amount of N that was remobilised from the roots and stem to the grain. The recovery of applied N in both experiments was high (about 80%). These experiments have shown that N available in the subsoil after anthesis can be used very efficiently and can contribute to both grain yield and GPC. A critical factor in the efficient use of this N appears to be root length density in the subsoil.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 495 ◽  
Author(s):  
Pingfeng Li ◽  
Huang Tan ◽  
Jiahang Wang ◽  
Xiaoqing Cao ◽  
Peiling Yang

Although water-saving measures are increasingly being adopted in orchards, little is known about how different irrigation methods enhance water use efficiency at the root system level. To study the allocation of water sources of water absorption by cherry roots under two irrigation methods, surface irrigation and drip irrigation, oxygen isotope tracing and root excavation were used in this study. We found that different irrigation methods have different effects on the average δ18O content of soil water in the soil profile. The IsoSource model was applied to calculate the contribution rate of water absorption by cherry roots under these irrigation methods. During the drought period in spring (also a key period of water consumption for cherry trees), irrigation water was the main source of water absorbed by cherry roots. In summer, cherry roots exhibited a wide range of water absorption sources. In this case, relative to the surface irrigation mode, the drip irrigation mode demonstrated higher irrigation water use efficiency. After two years of the above experiment, root excavation was used to analyze the effects of these irrigation methods on the distribution pattern of roots. We found that root distribution is mainly affected by soil depth. The root system indexes in 10–30 cm soil layer differ significantly from those in other soil layers. Drip irrigation increased the root length density (RLD) and root surface area (RSA) in the shallow soil. There was no significant difference in root biomass density (RBD) and root volume ratio (RVR) between the two irrigation treatments. The effects of these irrigation methods on the 2D distribution of cherry RBD, RLD, RSA and RVR, which indicated that the cherry roots were mainly concentrated in the horizontal depths of 20 to 100 cm, which was related to the irrigation wet zone. In the current experiment, more than 85% of cherry roots were distributed in the space with horizontal radius of 0 to 100 cm and vertical depth of 0 to 80 cm; above 95% of cherry roots were distributed in the space with the horizontal radius of 0 to 150 cm and the vertical depth of 0 to 80 cm. Compared with surface irrigation, drip irrigation makes RLD and RSA more concentrated in the horizontal range of 30–100 cm and vertical range of 0–70 cm.


2017 ◽  
Vol 14 (2) ◽  
pp. 46-55 ◽  
Author(s):  
Binny Dasila ◽  
Veer Singh ◽  
HS Kushwaha ◽  
Ajaya Srivastava ◽  
Shri Ram

Lysimeter experiment was conducted at Govind Ballabh Pant University of Agriculture & Technology, Pantnagar during summer season 2013 to study the effect of irrigation schedules and methods on yield, nutrient uptake and water use efficiency of cowpea as well as nutrient loss from silty clay loam soil under fluctuating water table conditions. The experiment was laid out in factorial randomized block design having three irrigation schedules at IW/CPE ratio of 0.3. 0.2 and 0.15 with two irrigation methods (flood and sprinkler) and at 30±1.5, 60±1.5 and 90±1.5 cm water tables replicated thrice. Maximum root length (129.4 cm) and root length density (0.395 cm/cm3) were obtained when irrigation was scheduled at IW: CPE 0.3 associated with 30±1.5 cm water table depth using sprinkler method. Increase in water table depth and IW: CPE ratio decreased water use efficiency where IW: CPE 0.3 produced highest grain yield (1411.6 kg ha-1) with the WUE of 1.15 kg ha mm-1. Significant nutrients uptake response was observed owing to variation in water table depth, irrigation schedules and methods. Analysis of lysimeter leached water showed that with deep drainage and more IW:CPE, leaching losses of N,P and K were more however water applied through sprinkler saved 20.1, 53.7 and 24.4% N, P and K, respectively, over flooded method. Irrigation given at IW: CPE 0.3 through sprinkler form at 60±1.5 cm water table depth favours the higher grain yield and nutrient uptake by crop whereas flooded irrigation with deep water table condition accelerated nutrient leaching.SAARC J. Agri., 14(2): 46-55 (2016)


1992 ◽  
Vol 43 (5) ◽  
pp. 987 ◽  
Author(s):  
RE Holloway ◽  
AM Alston

Wheat (Triticum aestivum L. cv. Warigal) was grown in a glasshouse in deep pots (0.125 x 0.125 x 1.2 m) containing sieved solonized brown soil (calcixerollic xerochrept) comprising 0.2 m sandy loam topsoil above 0.6 m treated calcareous sandy loam subsoil and a base layer of light clay 0.26 m thick. The subsoil was treated with a mixture of salts (0, 13, 39, 75 mmolc kg-1) and with boric acid (0, 20, 38 and 73 mg B kg-1) in factorial combination. The soil was initially watered to field capacity and water use was determined by regularly weighing the pots. The soil was allowed to dry gradually during the season, but the weights of the pots were not permitted to fall below that corresponding to 17% of the available water holding capacity of the soil. Tillering, dry weight of shoots and grain, and root length density were determined. Water-use efficiency was calculated with respect to total dry weight and grain production. Salt decreased tillering, dry matter production, grain yield, root length and water-use efficiency (total dry weight): it increased sodium and decreased boron concentrations in the plants. Boron decreased dry matter production (but not tillering), grain yield, root length and water-use efficiency (total dry weight and grain yield): it increased the concentrations of boron and decreased the concentration of sodium in the plants. At the concentrations of salt and boron used (which cover the range normally encountered in subsoils in much of Upper Eyre Peninsula), boron had more deleterious effects on wheat than did salt. Yield was depressed by salt at concentrations of sodium in the tissue commonly found in field-grown plants.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Abdul Shabbir ◽  
Hanping Mao ◽  
Ikram Ullah ◽  
Noman Ali Buttar ◽  
Muhammad Ajmal ◽  
...  

The spatial distribution of root systems in the soil has major impacts on soil water and nutrient uptake and ultimately crop yield. This research aimed to optimize the root distribution patterns, growth, and yield of cherry tomato by using a number of emitters per plant. A randomized complete block design technique was adopted by selecting eight treatments with two irrigation regimes and four levels of emitters under greenhouse conditions. The experiment results showed that the root distribution extended over the entire pot horizontally and shifted vertically upwards with increased emitter density. The deficit irrigation resulted in reduced horizontal root extension and shifted the root concentrations deeper. Notably, tomato plants with two emitters per plant and deficit irrigation treatment showed an optimal root distribution compared to the other treatments, showing wider and deeper dispersion measurements and higher root length density and root weight density through the soil with the highest benefit–cost ratio (1.3 and 1.1 cm cm−3, 89.8 and 77.7 µg cm−3, and 4.20 and 4.24 during spring–summer and fall-winter cropping seasons, respectively). The increases in yield and water use efficiency (due to increased yield) were 19% and 18.8%, respectively, for spring–summer cropping season and 11.5% and 11.8%, respectively, for fall–winter cropping season, with two emitters per plant over a single emitter. The decrease in yield was 5.3% and 4%, and increase in water use efficiency (due to deficit irrigation) was 26.2% and 27.9% for spring-summer and fall-winter cropping seasons, respectively, by deficit irrigation over full irrigation. Moreover, it was observed that two, three, and four emitters per plant had no significant effects on yield and water use efficiency. Thus, it was concluded that two emitters per plant with deficit irrigation is optimum under greenhouse conditions for the cultivation of potted cherry tomatoes, considering the root morphology, root distribution, dry matter production, yield, water use efficiency, and economic analysis.


2022 ◽  
Vol 260 ◽  
pp. 107289
Author(s):  
Pengpeng Chen ◽  
Xiaobo Gu ◽  
Yuannong Li ◽  
Linran Qiao ◽  
Yupeng Li ◽  
...  

2020 ◽  
Vol 57 (1) ◽  
pp. 79-83
Author(s):  
RA Aparna ◽  
V Jayakrishnakumar

The field experiment was conducted in the farmer's field, Peringammala, Kalliyoor, Thiruvananthapuram during the Virippu 2017 to study the effect of irrigation scheduling and live mulching with cowpea on root and soil moisture characteristics of upland rice. The results revealed that root characters like root volume, root dry weight and root shoot ratio significantly increased under the irrigation treatment I1 [irrigation at 3 cm depth at 10 mm cumulative pan evaporation (CPE)]. The root length was the highest for rain fed control (I7). Among the mulches, live mulching with cowpea (M2) recorded the highest root length and root shoot ratio. The treatments and their interaction had a significant influence on soil moisture. Irrigation at 3 cm depth at 10 mm CPE, live mulching with cowpea and their interaction recorded the highest consumptive use. The highest water use efficiency was recorded by the treatment irrigation at 2 cm depth at 20 mm CPE (I5) and live mulching with cowpea (M2).


Sign in / Sign up

Export Citation Format

Share Document