Anticonvulsant Effect of Asparagus racemosus Willd. in a Mouse Model of Catamenial Epilepsy

Author(s):  
Priyanka Pahwa ◽  
Tanveer Singh ◽  
Rajesh Kumar Goel
2019 ◽  
Vol 82 (11) ◽  
pp. 3047-3055 ◽  
Author(s):  
Lyndsey L. Anderson ◽  
Ivan K. Low ◽  
Samuel D. Banister ◽  
Iain S. McGregor ◽  
Jonathon C. Arnold

2007 ◽  
Vol 573 (1-3) ◽  
pp. 111-115 ◽  
Author(s):  
Kinga K. Borowicz ◽  
Marta Morawska ◽  
Kamila Furmanek-Karwowska ◽  
Jarogniew J. Luszczki ◽  
Stanislaw J. Czuczwar

2018 ◽  
Vol 120 (3) ◽  
pp. 1404-1414 ◽  
Author(s):  
Jingliang Zhang ◽  
Xiaoling Chen ◽  
Matti Kårbø ◽  
Yi Zhao ◽  
Long An ◽  
...  

Temporal lobe epilepsy (TLE), the most common pharmacoresistant focal epilepsy disorder, remains a major unmet medical need. Propofol is used as a short-acting medication for general anesthesia and refractory status epilepticus with issues of decreased consciousness and memory loss. Dipropofol, a derivative of propofol, has been reported to exert antioxidative and antibacterial activities. Here we report that dipropofol exerted anticonvulsant activity in a mouse model of kainic acid-induced seizures. Whole cell patch-clamp recordings of brain slices from the medial entorhinal cortex (mEC) revealed that dipropofol hyperpolarized the resting membrane potential and reduced the number of action potential firings, resulting in suppression of cortical neuronal excitability. Furthermore, dipropofol activated native tonic GABAA currents of mEC layer II stellate neurons in a dose-dependent manner with an EC50 value of 9.3 ± 1.6 μM (mean ± SE). Taken together, our findings show that dipropofol activated GABAA currents and exerted anticonvulsant activities in mice, thus possessing developmental potential for new anticonvulsant therapy. NEW & NOTEWORTHY The anticonvulsant effect of dipropofol was shown in a mouse model of kainic acid-induced seizures. Whole cell patch-clamp recordings of brain slices showed suppression of cortical neuronal excitability by dipropofol. Dipropofol activated the native tonic GABAA currents in a dose-dependent manner.


2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Lyndsey L. Anderson ◽  
Michael Udoh ◽  
Declan Everett-Morgan ◽  
Marika Heblinski ◽  
Iain S. McGregor ◽  
...  

Abstract Objective Cannabigerolic acid (CBGA), a precursor cannabinoid in Cannabis sativa, has recently been found to have anticonvulsant properties in the Scn1a+/- mouse model of Dravet syndrome. Poor brain penetration and chemical instability of CBGA limits its potential as an anticonvulsant therapy. Here, we examined whether CBGA methyl ester, a more stable analogue of CBGA, might have superior pharmacokinetic and anticonvulsant properties. In addition, we examined whether olivetolic acid, the biosynthetic precursor to CBGA with a truncated (des-geranyl) form, might possess minimum structural requirements for anticonvulsant activity. We also examined whether olivetolic acid and CBGA methyl ester retain activity at the epilepsy-relevant drug targets of CBGA: G-protein-coupled receptor 55 (GPR55) and T-type calcium channels. Methods The brain and plasma pharmacokinetic profiles of CBGA methyl ester and olivetolic acid were examined following 10 mg/kg intraperitoneal (i.p.) administration in mice (n = 4). The anticonvulsant potential of each was examined in male and female Scn1a+/- mice (n = 17–19) against hyperthermia-induced seizures (10–100 mg/kg, i.p.). CBGA methyl ester and olivetolic acid were also screened in vitro against T-type calcium channels and GPR55 using intracellular calcium and ERK phosphorylation assays, respectively. Results CBGA methyl ester exhibited relatively limited brain penetration (13%), although somewhat superior to that of 2% for CBGA. No anticonvulsant effects were observed against thermally induced seizures in Scn1a+/- mice. Olivetolic acid also showed poor brain penetration (1%) but had a modest anticonvulsant effect in Scn1a+/- mice increasing the thermally induced seizure temperature threshold by approximately 0.4°C at a dose of 100 mg/kg. Neither CBGA methyl ester nor olivetolic acid displayed pharmacological activity at GPR55 or T-type calcium channels. Conclusions Olivetolic acid displayed modest anticonvulsant activity against hyperthermia-induced seizures in the Scn1a+/- mouse model of Dravet syndrome despite poor brain penetration. The effect was, however, comparable to the known anticonvulsant cannabinoid cannabidiol in this model. Future studies could explore the anticonvulsant mechanism(s) of action of olivetolic acid and examine whether its anticonvulsant effect extends to other seizure types.


Author(s):  
H. D. Geissinge ◽  
L.D. Rhodes

A recently discovered mouse model (‘mdx’) for muscular dystrophy in man may be of considerable interest, since the disease in ‘mdx’ mice is inherited by the same mode of inheritance (X-linked) as the human Duchenne (DMD) muscular dystrophy. Unlike DMD, which results in a situation in which the continual muscle destruction cannot keep up with abortive regenerative attempts of the musculature, and the sufferers of the disease die early, the disease in ‘mdx’ mice appears to be transient, and the mice do not die as a result of it. In fact, it has been reported that the severely damaged Tibialis anterior (TA) muscles of ‘mdx’ mice seem to display exceptionally good regenerative powers at 4-6 weeks, so much so, that these muscles are able to regenerate spontaneously up to their previous levels of physiological activity.


1998 ◽  
Vol 13 (11-s4) ◽  
pp. S178-S184 ◽  
Author(s):  
PETER KONTUREK ◽  
TOMASZ BRZOZOWSKI ◽  
STANISLAW KONTUREK ◽  
ELZBIETA KARCZEWSKA ◽  
ROBERT PAJDO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document