Numerical simulations of flow motion and deposition characteristics of granular debris flows

2009 ◽  
Vol 50 (3) ◽  
pp. 623-650 ◽  
Author(s):  
Der-Guey Lin ◽  
Sen-Yen Hsu ◽  
Kuang-Tsung Chang
2004 ◽  
Vol 4 (1) ◽  
pp. 103-116 ◽  
Author(s):  
K. T. Chau ◽  
K. H. Lo

Abstract. As over seventy percent of the land of Hong Kong is mountainous, rainfall-induced debris flows are not uncommon in Hong Kong. The objective of this study is to incorporate numerical simulations of debris flows with GIS to identify potential debris flow hazard areas. To illustrate this approach, the proposed methodology is applied to Leung King Estate in Tuen Mun. A Digital Elevation Model (DEM) of the terrain and the potential debris-flow sources were generated by using GIS to provide the required terrain and flow source data for the numerical simulations. A theoretical model by Takahashi et al. (1992) improved by incorporating a new erosion initiation criterion was used for simulating the runout distances of debris flows. The well-documented 1990 Tsing Shan debris flow, which occurred not too far from Leung King Estate, was used to calibrate most of the flow parameters needed for computer simulations. Based on the simulation results, a potential hazard zone was identified and presented by using GIS. Our proposed hazard map was thus determined by flow dynamics and a deposition mechanism through computer simulations without using any so- called expert opinions, which are bounded to be subjective and biased.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Jian Zhou ◽  
Ye-xun Li ◽  
Min-cai Jia ◽  
Cui-na Li

In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC3D). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element methodPFC3Dcan overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.


Geosciences ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 64 ◽  
Author(s):  
Nejc Bezak ◽  
Jošt Sodnik ◽  
Matjaž Mikoš

Debris flows with different magnitudes can have a large impact on debris fan characteristics such as height or slope. Moreover, knowledge about the impact of random sequences of debris flows of different magnitudes on debris fan properties is sparse in the literature and can be improved using numerical simulations of debris fan formation. Therefore, in this paper we present the results of numerical simulations wherein we investigated the impact of a random sequence of debris flows on torrential fan formation, where the total volume of transported debris was kept constant, but different rheological properties were used. Overall, 62 debris flow events with different magnitudes from 100 m3 to 20,000 m3 were selected, and the total volume was approximately 225,000 m3. The sequence of these debris flows was randomly generated, and selected debris fan characteristics after the 62 events were compared. For modeling purposes, we applied the Rapid Mass Movement Simulations (RAMMS) software and its debris flow module (RAMMS-DF). The modeling was carried out using (a) real fan topography from an alpine environment (i.e., an actual debris fan in north-west (NW) Slovenia formed by the Suhelj torrent) and (b) an artificial surface with a constant slope. Several RAMMS model parameters were tested. The simulation results confirm that the random sequence of debris flow events has only some minor effects on the fan formation (e.g., slope, maximum height), even when changing debris flow rheological properties in a wide range. After the 62 events, independent of the selected sequence of debris flows, the final fan characteristics were not significantly different from each other. Mann–Whitney (MW) tests and t-tests were used for this purpose, and the selected significance level was 0.05. Moreover, this conclusion applies for artificial and real terrain and for a wide range of tested RAMMS model rheological parameters. Further testing of the RAMMS-DF model in real situations is proposed in order to better understand its applicability and limitations under real conditions for debris flow hazard assessment or the planning of mitigation measures.


2018 ◽  
Vol 49 (1) ◽  
pp. 42-51
Author(s):  
Francesco Bettella ◽  
Tamara Michelini ◽  
Vincenzo D'Agostino ◽  
Gian Battista Bischetti

Debris flows are one of the most common geomorphic processes in steep mountainous areas. The control of their propagation on alluvial fans is fundamental; valley bottoms are usually characterised by high damage potential because they contain concentrations of inhabitants and infrastructure. It is well known that forests have a protective function in that they reduce the triggering of debris flows, as well as hinder their motion and promote deposition, but a quantitative assessment of these effects is still lacking. Using laboratory experiments that simulate debris-flow depositional processes, this research investigated the ability of forests to reduce debris-flow runout and depositional area. The experiments considered two different forest types, high forests and coppice forests, and four volumetric concentrations of sediment (0.50, 0.55, 0.60, and 0.65). The results confirmed that the sediment concentration of the flow is a key factor in determining the geometry of the deposits. On the other hand, forests can reduce debris-flow runout distance and, in general terms, affect the characteristics of their deposits. The results showed that vegetation appear to reduce debris-flow motion especially when the debris-flow kinematic load at the fan apex is low. About the sediment concentration of the mixture, high forest did not exhibit a clear behaviour while coppice forest appears to promote significant deposition at all of the tested concentrations, and this effect increases with the solid concentration (reductions in runout between approximately 20% and 30% at CV=0.50 and CV=0.65, respectively, were observed). Due to their higher tree density, in fact, coppice forests seem to have a better protective effect than the rigid trunks of high forest trees. For this last type of forest, a relationship between the H/L ratio, which represents energy dissipation, have been found and compared with the scenario without forest.


Author(s):  
Grétar Tryggvason ◽  
Ruben Scardovelli ◽  
Stéphane Zaleski

2020 ◽  
Vol 640 ◽  
pp. A53
Author(s):  
L. Löhnert ◽  
S. Krätschmer ◽  
A. G. Peeters

Here, we address the turbulent dynamics of the gravitational instability in accretion disks, retaining both radiative cooling and irradiation. Due to radiative cooling, the disk is unstable for all values of the Toomre parameter, and an accurate estimate of the maximum growth rate is derived analytically. A detailed study of the turbulent spectra shows a rapid decay with an azimuthal wave number stronger than ky−3, whereas the spectrum is more broad in the radial direction and shows a scaling in the range kx−3 to kx−2. The radial component of the radial velocity profile consists of a superposition of shocks of different heights, and is similar to that found in Burgers’ turbulence. Assuming saturation occurs through nonlinear wave steepening leading to shock formation, we developed a mixing-length model in which the typical length scale is related to the average radial distance between shocks. Furthermore, since the numerical simulations show that linear drive is necessary in order to sustain turbulence, we used the growth rate of the most unstable mode to estimate the typical timescale. The mixing-length model that was obtained agrees well with numerical simulations. The model gives an analytic expression for the turbulent viscosity as a function of the Toomre parameter and cooling time. It predicts that relevant values of α = 10−3 can be obtained in disks that have a Toomre parameter as high as Q ≈ 10.


Sign in / Sign up

Export Citation Format

Share Document