scholarly journals The ability of tree stems to intercept debris flows in forested fan areas: A laboratory modelling study

2018 ◽  
Vol 49 (1) ◽  
pp. 42-51
Author(s):  
Francesco Bettella ◽  
Tamara Michelini ◽  
Vincenzo D'Agostino ◽  
Gian Battista Bischetti

Debris flows are one of the most common geomorphic processes in steep mountainous areas. The control of their propagation on alluvial fans is fundamental; valley bottoms are usually characterised by high damage potential because they contain concentrations of inhabitants and infrastructure. It is well known that forests have a protective function in that they reduce the triggering of debris flows, as well as hinder their motion and promote deposition, but a quantitative assessment of these effects is still lacking. Using laboratory experiments that simulate debris-flow depositional processes, this research investigated the ability of forests to reduce debris-flow runout and depositional area. The experiments considered two different forest types, high forests and coppice forests, and four volumetric concentrations of sediment (0.50, 0.55, 0.60, and 0.65). The results confirmed that the sediment concentration of the flow is a key factor in determining the geometry of the deposits. On the other hand, forests can reduce debris-flow runout distance and, in general terms, affect the characteristics of their deposits. The results showed that vegetation appear to reduce debris-flow motion especially when the debris-flow kinematic load at the fan apex is low. About the sediment concentration of the mixture, high forest did not exhibit a clear behaviour while coppice forest appears to promote significant deposition at all of the tested concentrations, and this effect increases with the solid concentration (reductions in runout between approximately 20% and 30% at CV=0.50 and CV=0.65, respectively, were observed). Due to their higher tree density, in fact, coppice forests seem to have a better protective effect than the rigid trunks of high forest trees. For this last type of forest, a relationship between the H/L ratio, which represents energy dissipation, have been found and compared with the scenario without forest.

2010 ◽  
Vol 10 (3) ◽  
pp. 535-545 ◽  
Author(s):  
S. M. Hsu ◽  
L. B. Chiou ◽  
G. F. Lin ◽  
C. H. Chao ◽  
H. Y. Wen ◽  
...  

Abstract. Debris flows pose severe hazards to communities in mountainous areas, often resulting in the loss of life and property. Helping debris-flow-prone communities delineate potential hazard zones provides local authorities with useful information for developing emergency plans and disaster management policies. In 2003, the Soil and Water Conservation Bureau of Taiwan proposed an empirical model to delineate hazard zones for all creeks (1420 in total) with potential of debris flows and utilized the model to help establish a hazard prevention system. However, the model does not fully consider hydrologic and physiographical conditions for a given creek in simulation. The objective of this study is to propose new approaches that can improve hazard zone delineation accuracy and simulate hazard zones in response to different rainfall intensity. In this study, a two-dimensional commercial model FLO-2D, physically based and taking into account the momentum and energy conservation of flow, was used to simulate debris-flow inundated areas. Sensitivity analysis with the model was conducted to determine the main influence parameters which affect debris flow simulation. Results indicate that the roughness coefficient, yield stress and volumetric sediment concentration dominate the computed results. To improve accuracy of the model, the study examined the performance of the rainfall-runoff model of FLO-2D as compared with that of the HSPF (Hydrological Simulation Program Fortran) model, and then the proper values of the significant parameters were evaluated through the calibration process. Results reveal that the HSPF model has a better performance than the FLO-2D model at peak flow and flow recession period, and the volumetric sediment concentration and yield stress can be estimated by the channel slope. The validation of the model for simulating debris-flow hazard zones has been confirmed by a comparison of field evidence from historical debris-flow disaster data. The model can successfully replicate the influence zone of the debris-flow disaster event with an acceptable error and demonstrate a better result than the empirical model adopted by the Soil and Water Conservation Bureau of Taiwan.


Geology ◽  
2019 ◽  
Vol 47 (8) ◽  
pp. 791-794 ◽  
Author(s):  
Tjalling de Haas ◽  
Alexander L. Densmore

Abstract Estimation of the volumes of potential future debris flows is a key factor in hazard assessment and mitigation. Worldwide, however, there are few catchments for which detailed volume-frequency information is available. We (1) reconstructed volume-frequency curves for 10 debris-flow catchments in Saline Valley, California (USA), from a large number of well-preserved, unmodified surficial flow deposits, and (2) assessed the correlations between lobe-volume quantiles and a set of morphometric catchment characteristics. We found statistically significant correlations between lobe-volume quantiles, including median and maximum, and catchment relief, length (planimetric distance from the fan apex to the most distant point along the watershed boundary), perimeter, and Melton ratio (relief divided by the square root of catchment area). These findings show that it may be possible to roughly estimate debris-flow lobe-volume quantiles from basic catchment characteristics that can be obtained from globally available elevation data. This may assist in design-volume estimation for debris-flow catchments where past flow volumes are otherwise unknown.


2021 ◽  
Author(s):  
Takahiro Itoh ◽  
Takahiko Nagayama ◽  
Satoru Matsuda ◽  
Takahisa Mizuyama

<p>The monitoring method for direct debris flow measurements using loadcells and so on, that were preliminary developed by WSL in Switzerland (McArdell et al., 2007), was firstly installed in Sakura-jima Island in Japan, where volcanic activity was severe, and many debris flows took place due to deposition of falling ash after eruptions. Debris Flow measurements with Loadcells and Pressure sensors (DFLP) system was installed referring to the method by WSL, and debris flow characteristics such as specific weight and volumetric sediment concentration have been obtained (e.g., Osaka et al., 2014).</p><p> In Japan, as well as in Sakura-jima island, attempts for debris flow monitoring were also carried out at KamiKamihori Creek since 1970s (e.g., Okuda et al., 1980), and there were a lot of debris flow events due to heavy rainfall. KamiKamihori Creek is at western side of Mt. Yake, where volcanic activity was severe at those time. The DFLP system was modified and installed there in November in 2014, because there were a lot of sediment deposition and debris flows took place though volcanic activity has been inactive. Present research could report the following results.  </p><p>(1) Multiple debris floe over five surges were monitored using DFLP system installed in 2014 during 15 minutes in debris flow events on August 29th, 2019. Rainfall intensity for 10 minutes was 12 mm and accumulated depth was 56 mm just before those events. Antecedent time before those events was 4.5 hours.</p><p>(2) The DFLP system measured multiple debris flow surges in events on August 29th, 2019, and sediment concentration was calculated temporary and continuously. Time-averaged sediment concentration and relative mass density are calculated as 0.470 and 1.73, respectively, under flow discharge obtained by images analysis of CCTV video camera. Equilibrium sediment concentration of coarse sediment particles is estimated 0.160 for bed slope of 0.141 (8 degrees) and calculated value using the DFLP system is over than the equilibrium value because of mud phase due to fine sediment particles.</p><p> </p><p>References</p><p>McArdell B.W., Bartelt P., Kowalski J. (2007). Field observations of basal forces and fluid pore pressure in a debris flow, Geophysical Research Letters, Vo. 34, L07406.</p><p>Okuda, S., Suwa, H., Okunishi, K., Yokoyama, K., and Nakano, M. (1980). Observation of the motion of debris flow and its geomorphological effects, Zeitschrift fur Geomorphology, Suppl.-Bd.35, pp. 142–163.</p><p>Osaka T., Utsunomiya R., Tagata S., Itoh T., Mizuyama T. (2014). Debris Flow Monitoring using Load Cells in Sakurajima Island, Proceedings of the Interpraevent 2014 in the Pacific Rim (edited by Fujita, M. et al.), Nov. 25-28, Nara, Japan, 2014, O-14.pdf in DVD.</p>


2000 ◽  
Vol 37 (1) ◽  
pp. 146-160 ◽  
Author(s):  
H Chen ◽  
C F Lee

A key requirement in the assessment of landslide risk in such densely populated urban areas as Hong Kong consists of the prediction of potential runout distance or the extent of the subsequent debris flow. This paper presents a three-dimensional dynamic model of unsteady gravity-driven debris flow. The Lagrangian Galerkin finite element method is used to determine the nodal velocity and depth of soil column elements within the sliding mass, with the momentum and mass conservation mathematically closed within the soil column elements. The numerical solution also features a lumped mass matrix and a volume-weighted procedure. The method of least squares approximation plays a smoothing role which enhances stability and efficiency of the numerical solution scheme. The nodal elevation during sliding is obtained via a dynamic bilinear interpolation of the elevation function for the base of the sliding mass. Furthermore, the accuracy, robustness, and generality of this method are validated by experimental results. Its application to the Shum Wan Road landslide and the Fei Tsui Road landslide, both of which occurred during a heavy rainstorm in Hong Kong on 13 August 1995 and involved fatalities, gives reasonable results in comparison to the field observations. A variety of rheological constitutive relationships have already been coded in the present program to provide flexibility and adaptability in practical applications.Key words: debris flows, three-dimensional dynamic model, runout distance.


2003 ◽  
Vol 3 (6) ◽  
pp. 683-691 ◽  
Author(s):  
A. Lorente ◽  
S. Beguería ◽  
J. C. Bathurst ◽  
J. M. García-Ruiz

Abstract. Unconfined debris flows (i.e. not in incised channels) are one of the most active geomorphic processes in mountainous areas. Since they can threaten settlements and infrastructure, statistical and physically based procedures have been developed to assess the potential for landslide erosion. In this study, information on debris flow characteristics was obtained in the field to define the debris flow runout distance and to establish relationships between debris flow parameters. Such relationships are needed for building models which allow us to improve the spatial prediction of debris flow hazards. In general, unconfined debris flows triggered in the Flysch Sector of the Central Spanish Pyrenees are of the same order of magnitude as others reported in the literature. The deposition of sediment started at 17.8°, and the runout distance represented 60% of the difference in height between the head of the landslide and the point at which deposition started. The runout distance was relatively well correlated with the volume of sediment.


2020 ◽  
Vol 10 (17) ◽  
pp. 6079 ◽  
Author(s):  
Byung-Gon Chae ◽  
Ying-Hsin Wu ◽  
Ko-Fei Liu ◽  
Junghae Choi ◽  
Hyuck-Jin Park

This study analyzed landslide susceptibility and numerically simulated the runout distance of debris flows near a construction site in Korea. Landslide susceptibility was based on a landslide prediction map of the study area. In the prediction map, 3.5% of the area had a 70–90% landslide probability, while 0.79% had over 90% probability. Based on the landslide susceptibility analysis, debris flows in four watersheds were simulated to assess possible damage to the construction site. According to the simulations, debris flow in Watershed C approaches to within 9.6 m of the site. Therefore, the construction site could be impacted by debris flow in Watershed C. Although the simulated flows in Watersheds A and D do not directly influence the construction site, they could damage the nearby road and other facilities. The simulations also show that debris runout distance is strongly influenced by the volume of debris in the on-slope source area and by the slope angles along the debris-flow path.


2012 ◽  
Vol 12 (8) ◽  
pp. 2499-2505 ◽  
Author(s):  
N. Hotta

Abstract. Measuring the interstitial water pressure of debris flows under various conditions gives essential information on the flow stress structure. This study measured the basal interstitial water pressure during debris flow routing experiments in a laboratory flume. Because a sensitive pressure gauge is required to measure the interstitial water pressure in shallow laboratory debris flows, a differential gas pressure gauge with an attached diaphragm was used. Although this system required calibration before and after each experiment, it showed a linear behavior and a sufficiently high temporal resolution for measuring the interstitial water pressure of debris flows. The values of the interstitial water pressure were low. However, an excess of pressure beyond the hydrostatic pressure was observed with increasing sediment particle size. The measured excess pressure corresponded to the theoretical excess interstitial water pressure, derived as a Reynolds stress in the interstitial water of boulder debris flows. Turbulence was thought to induce a strong shear in the interstitial space of sediment particles. The interstitial water pressure in boulder debris flows should be affected by the fine sediment concentration and the phase transition from laminar to turbulent debris flow; this should be the subject of future studies.


2017 ◽  
Author(s):  
Joshua I. Theule ◽  
Stefano Crema ◽  
Lorenzo Marchi ◽  
Marco Cavalli ◽  
Francesco Comiti

Abstract. The assessment of flow velocity has a central role in quantitative analysis of debris flows, both for the characterization of the phenomenology of these processes, and for the assessment of related hazards. Large scale particle image velocimetry (LSPIV) can contribute to the assessment of surface velocity of debris flows, provided that the specific features of these processes (e.g. fast stage variations and particles up to boulder size on the flow surface) are taken into account. Three debris flow events, each of them consisting of several surges featuring different sediment concentration, flow stage and velocity, have been analyzed at the inlet of a sediment trap in a stream of the eastern Italian Alps (Gadria Creek). Free softwares have been employed for preliminary treatment (ortho-rectification and format conversion) of video-recorded images as well as for LSPIV application. Results show that LSPIV velocities are consistent with manual measurements on the ortho-rectified imagery and with front velocity measured from the hydrographs in a channel reach approximately 70 m upstream of the sediment trap. Horizontal turbulence, computed as the standard deviation of the flow directions at a given cross-section for a given surge, proved to be correlated with surface velocity and with visually estimated sediment concentration. The study demonstrates the effectiveness of LSPIV in the assessment of surface velocity of debris flows, and permit to identify the most crucial aspects for improving the accuracy of debris flows velocity measurements.


2018 ◽  
Vol 18 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Joshua I. Theule ◽  
Stefano Crema ◽  
Lorenzo Marchi ◽  
Marco Cavalli ◽  
Francesco Comiti

Abstract. The assessment of flow velocity has a central role in quantitative analysis of debris flows, both for the characterization of the phenomenology of these processes and for the assessment of related hazards. Large-scale particle image velocimetry (LSPIV) can contribute to the assessment of surface velocity of debris flows, provided that the specific features of these processes (e.g. fast stage variations and particles up to boulder size on the flow surface) are taken into account. Three debris-flow events, each of them consisting of several surges featuring different sediment concentrations, flow stages, and velocities, have been analysed at the inlet of a sediment trap in a stream in the eastern Italian Alps (Gadria Creek). Free software has been employed for preliminary treatment (orthorectification and format conversion) of video-recorded images as well as for LSPIV application. Results show that LSPIV velocities are consistent with manual measurements of the orthorectified imagery and with front velocity measured from the hydrographs in a channel recorded approximately 70 m upstream of the sediment trap. Horizontal turbulence, computed as the standard deviation of the flow directions at a given cross section for a given surge, proved to be correlated with surface velocity and with visually estimated sediment concentration. The study demonstrates the effectiveness of LSPIV in the assessment of surface velocity of debris flows and permit the most crucial aspects to be identified in order to improve the accuracy of debris-flow velocity measurements.


2021 ◽  
Vol 91 (1) ◽  
pp. 1-20
Author(s):  
Deniz Cukur ◽  
In-Kwon Um ◽  
Jong-Hwa Chun ◽  
Gwang-Soo Lee ◽  
Gee-Soo Kong ◽  
...  

ABSTRACT We analyzed data from seven piston cores, multi-channel seismic-reflection (MCS) and chirp profiles, and multibeam echosounder (MBES) data to study the distribution, emplacement time, sedimentary facies, and depositional processes of sediment-gravity-flow deposits in the Onnuri Basin, a confined basin in the East Sea. These data reveal that debris flows have traveled ca. 30 km downslope, forming a seismic facies consisting of stacked, wedge-shaped, transparent units separated by high-amplitude continuous reflectors. Analysis of piston cores shows three distinct sedimentary units, throughout the basin. The lowest unit, I, is a debrite containing numerous mud clasts of varying size and color distributed in a mud-rich matrix; it is absent over elevated basinal highs or ridges, such as the Onnuri Ridge, suggesting that local topography controls its distribution. The debrite forms a recognizable acoustically transparent layer on subbottom chirp profiles (av. 7 m thick), covers approximately 500 km2, and has an estimated volume of ∼ 3.5 km3. The overlying unit, II, contains normally graded beds composed of massive sand, laminated and cross-laminated sand and silt, and a thick cap of structureless mud. This unit is interpreted to be a megaturbidite deposited from turbidity currents that originated from the flow transformation of debris flows on the upper continental slope. The megaturbidite covers the entire basin (at least 650 km2), and has an average thickness of 2.8 m (maximum thickness of 4.35 m), and comprises a volume of 1.8 km3. Variations in grain size and sedimentary structures suggest that the megaturbidite was deposited by progressively waning flows that reflected off basin flanks and ridges. The thick (up to 3.65 m) structureless mud cap further indicates deposition in a confined basin. The sharp basal contact, together with the lack of hemipelagic sediments between debrite and overlying megaturbidite, suggest that both were deposited during the same flow event, likely to have originated from a single catastrophic slope failure. Collapsing slide material evolved into a debris flow, from which a turbidite formed by dilution of the debris flow. Radiocarbon dates suggest that the slope failure occurred about 13–11 ka, a time when sea level was ca. 50 m lower than at the present day. Hemipelagic sediments in the topmost unit, III-2, above the megaturbidite indicate that the basin has been stable since ca. 11 ka. We provide robust evidence that submarine slope failures evolve downslope into slides, debris flows, and finally, thick megaturbidites. This contribution highlights the importance of seafloor morphology on the distribution and stratigraphy of submarine flows in confined basins.


Sign in / Sign up

Export Citation Format

Share Document