Groundwater inflow prediction model of karst collapse pillar: a case study for mining-induced groundwater inrush risk

2014 ◽  
Vol 76 (2) ◽  
pp. 1319-1334 ◽  
Author(s):  
Dan Ma ◽  
Haibo Bai
2016 ◽  
Vol 82 (1) ◽  
pp. 73-93 ◽  
Author(s):  
Dan Ma ◽  
Xiexing Miao ◽  
Haibo Bai ◽  
Jihui Huang ◽  
Hai Pu ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1187 ◽  
Author(s):  
Dan Ma ◽  
Xin Cai ◽  
Qiang Li ◽  
Hongyu Duan

Groundwater inrush is a typical hydrologic natural hazard in mining engineering. Since 2000 to 2012, there have been 1110 types of mine groundwater inrush hazards with 4444 miners died or missing. As a general geological structure in the northern China coalfields, the karst collapse pillar (KCP) contains a significant amount of granular rocks, which can be easily migrated under high hydraulic pressure. Therefore, the KCP zone acts as an important groundwater inrush pathway in underground mining. Grouting the KCP zone can mitigate the risk of groundwater inrush hazard. However, the fracture or instability of the coal pillar near KCP can cause the instability of surrounding rock and even groundwater inrush hazard. To evaluate the risk of groundwater inrush from the aquifer that is caused by coal pillars instability within grouted KCP in a gob, an in-situ investigation on the deformation of the surrounding strata was conducted. Besides, a mechanical model for the continuous effect on the coal pillar with the floor-pillar-roof system was established; then, a numerical model was built to evaluate the continuous instability and groundwater inrush risk. The collective energy and stiffness in the floor-pillar-roof system are the two criterions for judging the stability of the system. As a basic factor to keep the stability of floor-pillar-roof system, the collective energy in coal pillar is larger than that in floor-roof system. Moreover, if the stiffness of floor-roof or coal pillar meets a negative value, the system will lose stability; thus, the groundwater inrush pathway will be produced. However, if there is a negative value occurring in floor-pillar-roof system meets, it indicates that the system structure is situated in a damage state; a narrower coal pillar will enlarge the risk of continuous instability in the system, leading to a groundwater inrush pathway easily. Continuous coal pillars show a lower probability of instability. Conversely, the fractured coal pillars have a greater probability of failure. The plastic zone and deformation of the roadway roof in the fractured coal pillar are larger than that of continuous coal pillar, indicating that the continuous coal pillars mitigate the risk of groundwater inrush hazard effectively.


2006 ◽  
Vol 1 (1) ◽  
Author(s):  
K. Katayama ◽  
K. Kimijima ◽  
O. Yamanaka ◽  
A. Nagaiwa ◽  
Y. Ono

This paper proposes a method of stormwater inflow prediction using radar rainfall data as the input of the prediction model constructed by system identification. The aim of the proposal is to construct a compact system by reducing the dimension of the input data. In this paper, Principal Component Analysis (PCA), which is widely used as a statistical method for data analysis and compression, is applied to pre-processing radar rainfall data. Then we evaluate the proposed method using the radar rainfall data and the inflow data acquired in a certain combined sewer system. This study reveals that a few principal components of radar rainfall data can be appropriate as the input variables to storm water inflow prediction model. Consequently, we have established a procedure for the stormwater prediction method using a few principal components of radar rainfall data.


Sign in / Sign up

Export Citation Format

Share Document