scholarly journals Combined hazard of typhoon-generated meteorological tsunamis and storm surges along the coast of Japan

2020 ◽  
Author(s):  
Mohammad Heidarzadeh ◽  
Alexander B. Rabinovich

AbstractTwo hazardous typhoons, Lionrock (August 2016) and Jebi (September 2018), destructively affected the coast of Japan and produced extreme sea level variations. The results of field surveys in the impacted regions showed that multiple deaths and extensive floods were caused by the combined effect of low-frequency sea level raise (storm surges) and intensive high-frequency (HF) tsunami-like waves (meteotsunamis). The data from ten tide gauges for the 2016 event and eight gauges for the 2018 event were used to examine the properties of the observed sea levels, to estimate the relative contribution of the two sea level components and to evaluate their statistical characteristics (maximum wave heights, amplitudes and periods of individual components, etc.). For the 2016 event, we found that the surge heights were from 12 to 35 cm and that the mean contribution of surges into the total observed sea level heights was ~ 39%; the meteotsunami amplitudes were from 22 to 92 cm, and they contributed 61% of the total height. For the 2018 event, storm surges were significantly stronger, from 46 to 170 cm, while HF amplitudes were from 38 to 130 cm; their relative inputs were 67% and 33%, respectively. Combined, they formed total flood heights of up to 120 cm (2016 event) and 288 cm (2018 event). Previously, the contribution of storm seiches (meteotsunamis) in coastal floods had been underestimated, but results of the present study demonstrate that they can play the principal role. What is even more important, they produce devastating currents: according to our estimates, current speeds were up to 3 knots (1.5 m/s) during the Lionrock event and more than 5 knots (2.6 m/s) during Jebi; these strong currents appear to be the main reason for the resulting damage of coastal infrastructure. The most important characteristic of the recorded meteotsunamis is their trough-to-crest maximum height. During the 2016 event, these heights at three stations were > 1 m: 171 cm at Erimo, 109 cm at Hachijojima and 102 cm at Ayukawa. The 2018 event was stronger; maximum meteotsunami wave heights were 257 cm at Gobo, 138 cm at Kushimoto, 137 cm at Kumano and 128 cm at Murotomisaki. The 2018 Gobo height of 257 cm is much larger than historical non-seismic seiche maxima for the Pacific coast of Japan (140–169 cm) estimated by Nakano and Unoki (1962) for the period of 1930–1956.

2021 ◽  
Author(s):  
Daria Smirnova ◽  
Igor Medvedev ◽  
Alexander Rabinovich ◽  
Jadranka Šepić

<p>Two hazardous typhoons, Maysak and Haishen, in September 2020 produced extreme sea level oscillations in the Sea of Japan. These typhoons generated three different types of sea level variations: 1) storm surges (with typical periods from several hours to 1.5 days), 2) extreme seiches (with periods from a few minutes to several tens of minutes), and 3) storm-generated infragravity waves (with periods up to 3-5 min). The data from eleven tide gauges on Russian, Korean, and Japanese coasts were used to examine the properties of these oscillations. The relative contribution of the three separate sea level components and their statistical characteristics (duration, wave heights, and periods) were estimated. The periods of the main eigen modes of individual bays and harbours in the Sea of Japan were estimated based on spectral analysis of longterm background records at the corresponding sites. The results of wavelet analysis show the frequency properties and the temporal evolution of individual sea level components. We found that high-frequency sea level oscillations at stations Preobrazheniye and Rudnaya Pristan have a “white noise” spectrum, caused by the dominance of infragravity waves. A high correlation was detected between the variance of high-frequency sea level oscillations at these stations and the significant wind wave height evaluated from ERA5 for this water area.</p>


2021 ◽  
Vol 9 (6) ◽  
pp. 595
Author(s):  
Américo Soares Ribeiro ◽  
Carina Lurdes Lopes ◽  
Magda Catarina Sousa ◽  
Moncho Gomez-Gesteira ◽  
João Miguel Dias

Ports constitute a significant influence in the economic activity in coastal areas through operations and infrastructures to facilitate land and maritime transport of cargo. Ports are located in a multi-dimensional environment facing ocean and river hazards. Higher warming scenarios indicate Europe’s ports will be exposed to higher risk due to the increase in extreme sea levels (ESL), a combination of the mean sea level, tide, and storm surge. Located on the west Iberia Peninsula, the Aveiro Port is located in a coastal lagoon exposed to ocean and river flows, contributing to higher flood risk. This study aims to assess the flood extent for Aveiro Port for historical (1979–2005), near future (2026–2045), and far future (2081–2099) periods scenarios considering different return periods (10, 25, and 100-year) for the flood drivers, through numerical simulations of the ESL, wave regime, and riverine flows simultaneously. Spatial maps considering the flood extent and calculated area show that most of the port infrastructures' resilience to flooding is found under the historical period, with some marginal floods. Under climate change impacts, the port flood extent gradually increases for higher return periods, where most of the terminals are at high risk of being flooded for the far-future period, whose contribution is primarily due to mean sea-level rise and storm surges.


1981 ◽  
Vol 32 (5) ◽  
pp. 721 ◽  
Author(s):  
E Wolanski ◽  
B Ruddick

Currents and sea levels were measured at a number of locations in the Great Barrier Reef (GBR) lagoon from about 10 to 13� S., during the period October-December 1979. A strong non-tidal, low-frequency modulation of all sea-level and current data was found. The currents nearshore were driven northward by the wind, and then at least partially blocked by the dense network of reefs to the north of 10� s. The water then flowed southward in deeper water adjacent to the reef, driven by a longshore pressure gradient. The low- frequency sea-level data, though not the current records, showed northward phase propagation at speeds characteristic of a first-mode shelf wave trapped in the lagoon between the shore and the reef. Data are presented revealing the intrusion of low-salinity water, through Bligh Entrance, in the GBR lagoon, as a result of river discharges in the Gulf of Papua. It is suggested that low-frequency longshore currents may periodically flush these river plumes from the GBR lagoon and enhance interaction between reefs. In the Coral Sea in front of reef passages, the large horizontal velocities may result in forces upwelling by selective withdrawal and jet entrainment.


2020 ◽  
Author(s):  
Sanne Muis ◽  
Maialen Irazoqui Apecechea ◽  
Job Dullaart ◽  
Joao de Lima Rego ◽  
Kristine S. Madsen ◽  
...  

<p>Climate change will lead to increases in the flood risk in low-lying coastal areas. Understanding the magnitude and impact of such changes is vital to design adaptive strategies and create awareness. In  the  context  of  the  CoDEC  project  (Coastal  Dataset  for  Evaluation  of  Climate  impact),  we  developed a consistent European dataset of extreme sea levels, including climatic changes from 1979 to 2100. To simulate extreme sea levels, we apply the Global Tide and Surge Model v3.0 (GTSMv3.0), a 2D hydrodynamic model with global coverage. GTSM has a coastal resolution of 2.5 km globally and 1.25 km in Europe, and incorporates dynamic interactions between sea-level  rise,  tides  and  storm surges. Validation of the dataset shows a good performance with a mean bias of 0-.04 m for the 1 in 10-year water levels. When analyzing changes in extreme sea levels for the future climate scenarios, it is projected that by the end of the century the 1 in 10-year water levels are likely to increase up to 0.5 m. This change is largely driven by the increase in mean sea levels, although locally changes in storms surge and interaction with tides can amplify the impacts of sea-level rise with changes up to 0.2 m in the 1 in 10-year water level.</p><p>The CoDEC dataset will be made accessible through a web portal on Copernicus Climate Data Store (C3S). The dataset includes a set of Climate Impact Indicators (CII’s) and new tools designed to evaluate the impacts of climate change on different sectors and industries. This data service will support European coastal sectors to adapt to changes in sea levels associated with climate change. In this presentation we will also demonstrate how the C3S coastal service can be used to enhance the understanding of local climate impacts.</p>


2014 ◽  
Vol 11 (4) ◽  
pp. 1995-2028 ◽  
Author(s):  
M. P. Wadey ◽  
I. D. Haigh ◽  
J. M. Brown

Abstract. For the UK's longest and most complete sea level record (Newlyn), we assess extreme high water events and their temporal clustering; prompted by the 2013/2014 winter of flooding and storms. These are set into context against this almost 100 yr record. We define annual periods for which storm activity, tides and sea levels can be compared on a year-by-year basis. Amongst the storms and high tides which affected Newlyn the recent winter produced the largest recorded high water (3 February 2014) and five others above a 1 in 1 yr return period. The large magnitude of tide and mean sea level, and the close inter-event spacings (of large return period high waters), suggests that the 2013/2014 high water "season" may be considered the most extreme on record. However, storm and sea level events may be classified in different ways. For example in the context of sea level rise (which we calculate linearly as 1.81 ± 0.1 mm yr−1 from 1915 to 2014), a lower probability combination of surge and tide occurred on 29 January 1948, whilst 1995/1996 storm surge season saw the most high waters of ≥ 1 in 1 yr return period. We provide a basic categorisation of five types of high water cluster, ranging from consecutive tidal cycles to multiple years. The assessment is extended to other UK sites (with shorter sea level records and different tide-surge characteristics), which suggests 2013/2014 was extreme, although further work should assess clustering mechanisms and flood system "memory".


2021 ◽  
Author(s):  
◽  
Emily Cayford

<p>The world is currently sitting on the brink of a massive upheaval as Climate Change continues to intensify. At this stage, there is no apparent turning back: the only remaining option is to adapt. While many countries are already feeling the effects, the most vulnerable lie within the Pacific Islands.  With 70% of the Samoan population living along their coastline (The World Bank, 2016), the country is identified as one of the most vulnerable Pacific Islands. It is prone to high waves and storm surges, along with tropical cyclones, which destroy livelihoods and housing, as well as claiming lives.  The traditional architecture of Samoa was originally built to withstand such weather events, but has not been adapting to resist the increased cyclone intensity and rising sea levels. The materials and building practices currently used within Samoa do not have the properties to resist these extreme weather events.  Western building practises have been introduced and into the Samoan construction industry, but has not yet successfully been integrated. Combinations of traditional and Western building practises are, instead, resulting in buildings more vulnerable than ever. This issue remains unresolved, with unsuitable housing remaining one of the largest dilemmas currently faced by Samoa’s inhabitants.  Samoa recently graduated from the classification: Least Developed Country, to be classified as a Developing Country (Pilot Programme for Climate Resilience). This places Samoa as one of the more developed nations of the Pacific, therefore encouraging Samoa to take the lead in resilience to the ever imposing effects of Climate Change. Samoa has a close relationship with both New Zealand and Australia and therefore has access to building expertise, education and materials. Why, then, is Samoa so lacking in architectural resilience to the effects of Climate Change?  This paper endeavours to investigate this gap and, in turn provide a potential resolution. These solutions could aid other Pacific countries as well as encouraging further architectural resilience that can then be mirrored by the remaining, vulnerable countries of the Pacific.  This thesis first investigates the question:  “Why has Samoan culture not developed stronger architectural resilience against Climate Change?”  This thesis then evolves to question:  “How can Samoan architecture be hybridised to influence increased architectural resilience against Climate Change?”</p>


2019 ◽  
Vol 38 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Albert Parker ◽  
Clifford Ollier

AbstractOver the past decades, detailed surveys of the Pacific Ocean atoll islands show no sign of drowning because of accelerated sea-level rise. Data reveal that no atoll lost land area, 88.6% of islands were either stable or increased in area, and only 11.4% of islands contracted. The Pacific Atolls are not being inundated because the sea level is rising much less than was thought. The average relative rate of rise and acceleration of the 29 long-term-trend (LTT) tide gauges of Japan, Oceania and West Coast of North America, are both negative, −0.02139 mm yr−1and −0.00007 mm yr−2respectively. Since the start of the 1900s, the sea levels of the Pacific Ocean have been remarkably stable.


2000 ◽  
Vol 1 (1) ◽  
pp. 45 ◽  
Author(s):  
G. MUNGOV ◽  
P. DANIEL

The frequency of the storm surges in the Black Sea is lower than that in other regions of the World Ocean but they cause significant damages as the magnitude of the sea level set-up is up to 7-8 times greater than that of other sea level variations. New methods and systems for storm surge forecasting and studying their statistical characteristics are absolutely necessary for the purposes of the coastal zone management. The operational forecasting storm surge model of Meteo-France was adopted for the Black Sea in accordance with the bilateral agreement between Meteo-France and NINMH. The model was verified using tide-gauge observations for the strongest storms observed along the Bulgarian coast over the last 10 years.


2021 ◽  
Vol 9 (12) ◽  
pp. 1430
Author(s):  
Francisco Silveira ◽  
Carina Lurdes Lopes ◽  
João Pedro Pinheiro ◽  
Humberto Pereira ◽  
João Miguel Dias

Coastal floods are currently a strong threat to socioeconomic activities established on the margins of lagoons and estuaries, as well as to their ecological equilibrium, a situation that is expected to become even more worrying in the future in a climate change context. The Ria de Aveiro lagoon, located on the northwest coast of Portugal, is not an exception to these threats, especially considering the low topography of its margins which has led to several flood events in the past. The growing concerns with these regions stem from the mean sea level (MSL) rise induced by climate changes as well as the amplification of the impacts of storm surge events, which are predicted to increase in the future due to higher mean sea levels. Therefore, this study aims to evaluate the influence of MSL rise on the inundation of Ria de Aveiro habitats and to assess the changes in inundation patterns resulting from frequent storm surges (2-year return period) from the present to the future, assessing their ecological and socioeconomic impacts. For this, a numerical model (Delft3D), previously calibrated and validated, was used to simulate the lagoon hydrodynamics under different scenarios combining MSL rise and frequent storm surge events. The numerical results demonstrated that MSL rise can change the vertical zonation and threaten the local habitats. Many areas of the lagoon may change from supratidal/intertidal to intertidal/subtidal, with relevant consequences for local species. The increase in MSL expected for the end of the century could make the lagoon more vulnerable to the effect of frequent storm surges, harming mostly agricultural areas, causing great losses for this sector and for many communities who depend on it. These extreme events can also affect artificialized areas and, in some cases, endanger lives.


Author(s):  
О. Андрианова ◽  
O. Andrianova ◽  
А. Батырев ◽  
A. Batyrev ◽  
Р. Белевич ◽  
...  

The changes of the sea level in the Atlantic, Pacific, Indian Oceans and the whole World Ocean for the period from 1880 till 2010 years were examined. The estimates of the values of the sea level increasing for that time period in each of the oceans and on the west and east coasts of the Atlantic and Pacific oceans were made. For this purpose, the annual sea level data were averaged over years for 68 stations in the Atlantic Ocean, 71 stations – in the Pacific and 33 stations – the Indian. Analysis of the temporary distributions of the sea level shows that increasing of the Atlantic sea level during that period (131 years) is 24,2 cm. Sea levels of Pacific and Indian Oceans during the same period increased on smaller value, 14,5 and 12,4 cm respectively. The reason for difference between the Atlantic and the Pacific Ocean in values of sea level rising, as it seems, is significant rising of the land (raising of the East coast of the Asian continent), which was occurred in about half of the stations on the west coast of the Pacific. In the Indian Ocean the zero level of water posts was not correct for many stations, and in some cases there were low quality data. The highest maxima in the sea level in the generalized curves of the temporary distributions appear with about 10-year cycles on the sea level of all oceans that is in good correlation with El Niño years.


Sign in / Sign up

Export Citation Format

Share Document