scholarly journals Pacific Sea Levels Rising Very Slowly and Not Accelerating

2019 ◽  
Vol 38 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Albert Parker ◽  
Clifford Ollier

AbstractOver the past decades, detailed surveys of the Pacific Ocean atoll islands show no sign of drowning because of accelerated sea-level rise. Data reveal that no atoll lost land area, 88.6% of islands were either stable or increased in area, and only 11.4% of islands contracted. The Pacific Atolls are not being inundated because the sea level is rising much less than was thought. The average relative rate of rise and acceleration of the 29 long-term-trend (LTT) tide gauges of Japan, Oceania and West Coast of North America, are both negative, −0.02139 mm yr−1and −0.00007 mm yr−2respectively. Since the start of the 1900s, the sea levels of the Pacific Ocean have been remarkably stable.

2016 ◽  
Vol 59 (3) ◽  
Author(s):  
Marco Olivieri ◽  
Giorgio Spada

<p>Exploiting the Delaunay interpolation, we present a newly implemented 2-D sea-level reconstruction from coastal sea-level observations to open seas, with the aim of characterizing the spatial variability of the rate of sea-level change. To test the strengths and weaknesses of this method and to determine its usefulness in sea-level interpolation, we consider the case studies of the Baltic Sea and of the Pacific Ocean. In the Baltic Sea, a small basin well sampled by tide gauges, our reconstructions are successfully compared with absolute sea-level observations from altimetry during 1993-2011. The regional variability of absolute sea level observed across the Pacific Ocean, however, cannot be reproduced. We interpret this result as the effect of the uneven and sparse tide gauge data set and of the composite vertical land movements in and around the region. Useful considerations arise that can serve as a basis for developing sophisticated approaches.</p>


2021 ◽  
Vol 10 (1) ◽  
pp. 1-15
Author(s):  
Alberto Boretti

Abstract The paper provides an estimate of the latest relative and absolute rates of rise and accelerations of the sea levels for the East Coast of North America. The computation is based on the long-term trend (LTT) tide gauge records of the relative sea levels and the Global Navigation Satellite System (GNSS) time series of the absolute position of fixed dome nearby the tide gauges. The GNSS result is used to infer the subsidence or uplift of the tide gauge instrument. The data of 33 LTT tide stations with more than 80 years of data are shown. The average relative sea-level rise is +2.22 mm/yr. subjected to a small, positive average acceleration of +0.0027 mm/yr2. The average absolute velocity of the tide gauge instruments is −0.52 mm/yr. translating in an average absolute sea-level rise of +1.70 mm/yr. This is the first paper publishing a comprehensive survey of the absolute sea-level rates of rise along the East Coast of North America using the reliable information of relative sea-level rates of rise from LTT tide gauges, plus the absolute subsidence rates from GNSS antennas that are close to the tide gauges installations.


2020 ◽  
Vol 9 (1) ◽  
pp. 382-397
Author(s):  
Alberto Boretti

AbstractThe research issue of which are the present relative and absolute rates of rise and accelerations for North America is here addressed. The data of the 20 long-term-trend (LTT) tide stations of the West Coast of North America with more than 80 years of recorded data are shown. The absolute rates of rise are computed by considering the absolute vertical velocity of Global Navigation Satellite System (GNSS) antennas near the tide gauges, and the relative rate of sea-level rise from the tide gauge signals. The 20 LTT stations along the West Coast of North America show an average relative rate of rise of -0.38 mm/yr., an average acceleration of +0.0012 mm/yr2, and an average absolute rate of rise of +0.73 mm/yr. This is the first paper publishing a comprehensive survey of the absolute sea-level rates of rise along the West Coast of North America using the reliable information of relative sea-level rates of rise from LTT tide gauges plus the absolute subsidence rates from different GNSS antennas close to the tide gauge installations.


2014 ◽  
Vol 3 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Albert Parker

Abstract Sea levels generally oscillate with multi-decadal periodicities worldwide with up to the quasi-60 years detected in many tide gauges. Nevertheless, the most part of the literature on sea levels computes apparent rates of rise of sea levels much larger than the legitimate by using short time windows in selected locations only covering part of a valley-to-peak of this multi-decadal oscillation. It is shown in this paper that along the Pacific coast of Australia the sea levels oscillate with a frequency close to the Southern Ocean Index (SOI) oscillation of 19 years and a lower frequency of about 60 years. The rates of rise of sea levels computed by linear fitting of the data recorded since the early 1990s in selected locations of the Australian Pacific coastline and in the tropical Pacific islands are from a valley of the peak and valley oscillations and are much higher than the legitimate long term values.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroshi Ishida ◽  
Ryosuke S. Isono ◽  
Jun Kita ◽  
Yutaka W. Watanabe

AbstractThis study examines long-term ocean pH data to evaluate ocean acidification (OA) trends at two coastal research institutions located on the Sea of Japan and the Pacific Ocean. These laboratories are located away from the influences of large rivers and major industrial activity. Measurements were performed daily for the past 30 years (1980s–2010s). The average annual ocean pH for both sites showed generally negative trends. These trends were – 0.0032 and – 0.0068 year–1 (p < 0.001) at the Sea of Japan and Pacific Ocean sites, respectively. The trends were superimposed onto approximately 10-year oscillations, which appear to synchronize with the ocean current periodicity. At the Sea of Japan site, the ocean pH in the summer was higher, and the rate of OA was higher than during other seasons. Our results suggest that seasonality and ocean currents influence OA in the coastal areas of open oceans and can affect the coastal regions of marginal seas.


2019 ◽  
Vol 36 (4) ◽  
pp. 689-698 ◽  
Author(s):  
Lingsheng Meng ◽  
Wei Zhuang ◽  
Weiwei Zhang ◽  
Angela Ditri ◽  
Xiao-Hai Yan

AbstractSea level changes within wide temporal–spatial scales have great influence on oceanic and atmospheric circulations. Efforts have been made to identify long-term sea level trend and regional sea level variations on different time scales. A nonuniform sea level rise in the tropical Pacific and the strengthening of the easterly trade winds from 1993 to 2012 have been widely reported. It is well documented that sea level in the tropical Pacific is associated with the typical climate modes. However, sea level change on interannual and decadal time scales still requires more research. In this study, the Pacific sea level anomaly (SLA) was decomposed into interannual and decadal time scales via an ensemble empirical mode decomposition (EEMD) method. The temporal–spatial features of the SLA variability in the Pacific were examined and were closely associated with climate variability modes. Moreover, decadal SLA oscillations in the Pacific Ocean were identified during 1993–2016, with the phase reversals around 2000, 2004, and 2012. In the tropical Pacific, large sea level variations in the western and central basin were a result of changes in the equatorial wind stress. Moreover, coherent decadal changes could also be seen in wind stress, sea surface temperature (SST), subtropical cells (STCs), and thermocline depth. Our work provided a new way to illustrate the interannual and decadal sea level variations in the Pacific Ocean and suggested a coupled atmosphere–ocean variability on a decadal time scale in the tropical region with two cycles from 1993 to 2016.


2015 ◽  
Vol 28 (4) ◽  
pp. 1561-1577 ◽  
Author(s):  
Bo Qiu ◽  
Shuiming Chen ◽  
Lixin Wu ◽  
Shinichiro Kida

Abstract Regional sea level trend and variability in the Pacific Ocean have often been considered to be induced by low-frequency surface wind changes. This study demonstrates that significant sea level trend and variability can also be generated by eddy momentum flux forcing due to time-varying instability of the background oceanic circulation. Compared to the broad gyre-scale wind-forced variability, the eddy-forced sea level changes tend to have subgyre scales and, in the North Pacific Ocean, they are largely confined to the Kuroshio Extension region (30°–40°N, 140°–175°E) and the Subtropical Countercurrent (STCC) region (18°–28°N, 130°–175°E). Using a two-layer primitive equation model driven by the ECMWF wind stress data and the eddy momentum fluxes specified by the AVISO sea surface height anomaly data, the relative importance of the wind- and eddy-forced regional sea level trends in the past two decades is quantified. It is found that the increasing (decreasing) trend south (north) of the Kuroshio Extension is due to strengthening of the regional eddy forcing over the past two decades. On the other hand, the decreasing (increasing) sea level trend south (north) of the STCC is caused by the decadal weakening of the regional eddy momentum flux forcing. These decadal eddy momentum flux changes are caused by the background Kuroshio Extension and STCC changes in connection with the Pacific decadal oscillation (PDO) wind pattern shifting from a positive to a negative phase over the past two decades.


1999 ◽  
Vol 52 (3) ◽  
pp. 350-359 ◽  
Author(s):  
W.Roland Gehrels

A relative sea-level history is reconstructed for Machiasport, Maine, spanning the past 6000 calendar year and combining two different methods. The first method establishes the long-term (103 yr) trend of sea-level rise by dating the base of the Holocene saltmarsh peat overlying a Pleistocene substrate. The second method uses detailed analyses of the foraminiferal stratigraphy of two saltmarsh peat cores to quantify fluctuations superimposed on the long-term trend. The indicative meaning of the peat (the height at which the peat was deposited relative to mean tide level) is calculated by a transfer function based on vertical distributions of modern foraminiferal assemblages. The chronology is determined from AMS 14C dates on saltmarsh plant fragments embedded in the peat. The combination of the two different approaches produces a high-resolution, replicable sea-level record, which takes into account the autocompaction of the peat sequence. Long-term mean rates of sea-level rise, corrected for changes in tidal range, are 0.75 mm/yr between 6000 and 1500 cal yr B.P. and 0.43 mm/yr during the past 1500 year. The foraminiferal stratigraphy reveals several low-amplitude fluctuations during a relatively stable period between 1100 and 400 cal yr B.P., and a sea-level rise of 0.5 m during the past 300 year.


Sign in / Sign up

Export Citation Format

Share Document